A RECURRENCE FORMULA FOR THE q**-BERNOULLI NUMBERS ATTACHED TO FORMAL GROUP**

JUNYA SATOH

ABSTRACT. Kaneko [2] proved a new recurrence formula for the Bernoulli numbers and gave two proofs. One of them was due to Don Zagier. We shall apply Zagier's idea to the q-Bernoulli numbers attached to formal group.

1. **Generalization of Kaneko's recurrence formula**

Let $\mathfrak{B} = \mathfrak{B}(X)$ be the generating function of the Bernoulli numbers, i.e.,

$$
\mathfrak{B} = \frac{X}{e^X - 1} \;,
$$

then it is anti-invariant under a map: $\mathfrak{B} \mapsto \mathfrak{B}e^X$, i.e.,

$$
\mathfrak{B}(X)e^X = \mathfrak{B}(-X) .
$$

Zagier gave another proof of Kaneko's recurrence formula for the Bernoulli numbers by using this property [2]. On the other hand because of $\mathfrak{B}(-X) = \mathfrak{B}(X) + X$, we can see that \mathfrak{B} is transformed to the sum of a polynomial and itself under the above map. We use the second property in order to generalize Kaneko's recurrence formula and prove a formula for the q-Bernoulli numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:

Assumption 1.

$$
Be^X = B + C,
$$

where C *is a polynomial.*

If $C = X$, then B is equal to \mathfrak{B} , and if $C = X^2$, then B is essentially equal to the generating function of B_n which was defined in [2], i.e.,

$$
\sum_{n\geq 0} \tilde{B}_n \frac{X^n}{n!} = \left(\frac{X^2}{e^X - 1}\right)'.
$$

The starting point of our argument is the following trivial lemma:

Lemma 1. *For any power series* A *and non-negative integer* n*, we have*

$$
A^{(n)}e^X = \sum_{i=0}^n \binom{n}{i} (-1)^{n-i} (Ae^X)^{(i)},
$$

where $A^{(n)}$ *means the n*-th derivative of A.

Proof. Because of $A = (Ae^X)e^{-X}$, we can get what we want. \square

Set $A = B$ and compare the coefficient of $\frac{X^m}{m!}$ for any non-negative integer m, then we have a generalization of Kaneko's recurrence formula as follows:

Proposition 1. *If* B *satisfies* Assumption1*, then we have*

$$
\sum_{i=0}^{m} \binom{m}{i} b_{n+i} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} (b_{m+i} + c_{m+i}),
$$

where $B = \sum$ *ⁿ*≥⁰ $b_n \frac{X^n}{n!}$ and $C = \sum_{n \geq 0}$ $c_n \frac{X^n}{n!}$.

If $m > \deg C$, then we have

Corollary 1.

$$
\sum_{i=0}^{m} {m \choose i} b_{n+i} = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} b_{m+i} .
$$

Furthermore if $m = n$, then we have

Corollary 2.

$$
\sum_{\substack{i=0 \ i \not\equiv n \mod 2}}^n \binom{n}{i} b_{n+i} = 0.
$$

If $C = X$, then there is no new information about the Bernoulli numbers. But if $C = X^2$, then this is equivalent to Kaneko's recurrence formula.

2. q**-recurrence formula**

In this section we shall extend results in the previous section for the q-Bernoulli numbers attached to formal group. Let q be an indeterminate and let $\mathfrak o$ be the formal power series ring in $q-1$ over some Q-algebra. Furthermore let $\mathfrak{F}(X, Y)$ be a 1-dimensional commutative formal group defined over \mathfrak{o} and let $f(X)$ be an isomorphism from the additive formal group $X + Y$ to $\mathfrak{F}(X, Y)$. We note that there exists a unique isomorphism $f_{\mathfrak{F}}(X)$ from $X + Y$ to $\mathfrak{F}(X, Y)$ defined over \mathfrak{o} such that $f'_{\mathfrak{F}}(0) = 1$. And $f(X)$ is equal to $f_{\mathfrak{F}}(cX)$ for some invertible element $c \in \mathfrak{o}^{\times}$. Conversely for any $c \in \mathfrak{o}^{\times}$, $f_{\mathfrak{F}}(cX)$ is an isomorphism from $X + Y$ to $\mathfrak{F}(X, Y)$. Throughout this paper we assume that

Assumption 2.

$$
\operatorname{ord}_{q-1} {\mathfrak f}_{\mathfrak F}^{(n)}(0) \geq n-1 \quad \text{for all } n \geq 1 \ .
$$

We note that by this assumption $\mathfrak{F}_n(A, B)$ (see Definition 1 below) and $f(a)$ are convergent in \mathfrak{o} for any $A, B \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$ as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n, we denote the expansion of $\mathfrak{F}(X, Y)^n$ by

$$
\mathfrak{F}(X,Y)^n = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} X^i Y^j ,
$$

and we set

$$
\mathfrak{F}_n(A, B) = \sum_{i,j \ge 0} \binom{n}{i,j}_{\mathfrak{F}} a_i b_j
$$

for any power series $A = \sum$ *ⁿ*≥⁰ $a_n \frac{X^n}{n!}$ and $B = \sum_{n \geq 0}$ $b_n \frac{X^n}{n!}$ *in* $\mathfrak{o}[[X]]$ *. Then we define the* $*_{\mathfrak{F}}$ *-product* by

$$
A *_{\mathfrak{F}} B = \sum_{n \geq 0} \mathfrak{F}_n(A, B) \frac{X^n}{n!} .
$$

We can prove $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$ is an \mathfrak{o} -algebra (see [6, Proposition 1]). Next we extend the following map:

$$
X^n \mapsto c^n \underbrace{X *_{\mathfrak{F}} \cdots *_{\mathfrak{F}} X}_{n \text{ times}}
$$

o-linearly. Hence we can get a natural homomorphism from $(\mathfrak{o}[[X]], +, \cdot)$ to $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$. We call this map q-operator and denote the image of $A \in \mathfrak{o}[[X]]$ under the q-operator by $A_{\mathfrak{F},c}$. We define a q-analogue of power series A attached to $\mathfrak F$ and c by $A_{\mathfrak F,c}$. The following proposition is essential for our theory of q-analogue (see [6, Theorem 1 and Proposition 2]).

Proposition 2. *For any* $a, b \in \mathfrak{o}$ *, we have*

(i)
$$
(e^{aX})_{\mathfrak{F},c} = e^{\mathfrak{f}(a)X}
$$
,

 $(iii) e^{\int (a)X} *e^{\int (b)X} = e^{\int (a+b)X}$.

We define the q-Bernoulli numbers $\beta_n(\mathfrak{F}, c)$ attached to \mathfrak{F} and c as follows:

Definition 2. For each non-negative integer n, we define the n-th q-Bernoulli number $\beta_n(\mathfrak{F},c)$ attached *to* $\mathfrak{F}(X, Y) \in \mathfrak{o}[[X, Y]]$ *and* $c \in \mathfrak{o}^{\times}$ *by the coefficient of* $\frac{X^n}{n!}$ *in* $\mathfrak{B}_{\mathfrak{F},c} = \left(\frac{X}{e^X - 1}\right)_{\mathfrak{F},c}$.

We note that if $\mathfrak{F} = X + Y + (q-1)XY$ and $c = \frac{\log q}{q-1}$, then $f(X) = \frac{q^X - 1}{q-1}$ and $\beta_n(\mathfrak{F}, c)$ satisfies the following recurrence formula:

$$
\beta_0(\mathfrak{F}, c) = 1, \quad (q\beta(\mathfrak{F}, c) + 1)^n - \beta_n(\mathfrak{F}, c) = \begin{cases} \frac{\log q}{q - 1} & \text{for } n = 1, \\ 0 & \text{for } n > 1, \end{cases}
$$

where we use the usual convention about replacing $\beta(\mathfrak{F},c)^i$ by $\beta_i(\mathfrak{F},c)$ for each non-negative integer *i*.

4 JUNYA SATOH

Proof. Apply the q-operator to $\mathfrak{B}e^X - \mathfrak{B} = X$, then we have $\mathfrak{B}_{\mathfrak{F},c} *_{\mathfrak{F}} e^X - \mathfrak{B}_{\mathfrak{F},c} = cX$ and $\mathfrak{F}_n(\mathfrak{B}_{\mathfrak{F},c}, e^X) =$ $(q\beta(\mathfrak{F}, c) + 1)^n$. Hence the above recurrence formula holds. \square

Now we may get a q -analogue of Proposition 1 by applying the q -operator to Lemma 1, but it is unknown the commutativity of the q-operator and the derivative on $\mathfrak{o}[[X]]$. So we need to take another approach to get a q-analogue of Lemma 1.

Lemma 2. *For any power series* A*,* B *and non-negative integer* n*, we have*

$$
(A *_{\mathfrak{F}} B)^{(n)} = \sum_{i,j \ge 0} {n \choose i,j}_{\mathfrak{F}} A^{(i)} *_{\mathfrak{F}} B^{(j)}.
$$
 (1)

Proof. For any non-negative integer m, the coefficient of $\frac{X^m}{m!}$ in the left hand side of (1) is equal to

$$
\mathfrak{F}_{m+n}(A,B) = \sum_{i,j \geq 0} \binom{m+n}{i,j}_{\mathfrak{F}} a_i b_j.
$$

On the other hand that in the right hand of (1) is equal to

$$
\sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \mathfrak{F}(A^{(i)},B^{(j)}) = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \sum_{k,l\geq 0} \binom{m}{k,l}_{\mathfrak{F}} a_{i+k} b_{j+l}.
$$

Hence it is sufficient to show that

$$
\binom{m+n}{i,j}_\mathfrak{F}=\sum_{\substack{0\leq k\leq i\\0\leq l\leq j}}\binom{m}{k,l}_\mathfrak{F}\binom{n}{i-k,j-l}_\mathfrak{F}
$$

for all $i \geq 0$ and $j \geq 0$. Because of $\mathfrak{F}(X, Y)^{m+n} = \mathfrak{F}(X, Y)^m \mathfrak{F}(X, Y)^n$, we can get what we want. \Box Apply this lemma to $A *_{\mathfrak{F}} e^{f(1)X}$ and $e^{f(-1)X}$, then we have **Lemma 3.**

$$
A^{(n)} \ast_{\mathfrak{F}} e^{\mathfrak{f}(1)X} = \sum_{i,j>0} {n \choose i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j (A \ast_{\mathfrak{F}} e^{\mathfrak{f}(1)X})^{(i)}.
$$

i,j≥⁰

This is a q-analogue of Lemma 1. If B satisfies Assumption 1, by applying the q-operator, we have

$$
B_{\mathfrak{F},c} *_{\mathfrak{F}} e^{\mathfrak{f}(1)X} = B_{\mathfrak{F},c} + C_{\mathfrak{F},c}.
$$

If C is a polynomial, then $C_{\mathfrak{F},c}$ is also a polynomial and deg $C = \deg C_{\mathfrak{F},c}$ (see [6, Lemma 2]). Hence we have the following:

Proposition 3. *If* B *satisfies* Assumption 1 *then we have*

$$
\sum_{i,j\geq 0} {m \choose i,j}_{\mathfrak{F}} \mathfrak{f}(1)^j \beta_{n+i} = \sum_{i,j\geq 0} {n \choose i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j (\beta_{m+i} + \gamma_{m+i})
$$

for any non-negative integer m *and* n, where $B_{\mathfrak{F},c} = \sum$ *ⁿ*≥⁰ $\beta_n \frac{X^n}{n!}$ and $C_{\mathfrak{F},c} = \sum_{n \geq 0}$ $\gamma_n \frac{X^n}{n!}$. If $m > \deg C$, then we have

Corollary 3.

$$
\sum_{i,j\geq 0} {m \choose i,j}_{\mathfrak{F}} \mathfrak{f}(1)^j \beta_{n+i} = \sum_{i,j\geq 0} {n \choose i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j \beta_{m+i}.
$$

Furthermore if $m = n$, then we have

Corollary 4.

$$
\sum_{i,j\geq 0} {n \choose i,j}_{\mathfrak{F}} \{ \mathfrak{f}(1)^j - \mathfrak{f}(-1)^j \} \beta_{n+i} = 0.
$$

Hence if $C = X$, then we get a recurrence formula for $\beta_n = \beta_n(\mathfrak{F}, c)$. On the other hand if $C = X^2$, then β_n is the coefficient of $\frac{\breve{X}^n}{n!}$ in

$$
\left(\!\frac{X^2}{e^X-1}\!\right)_{\mathfrak{F},c}=cX*_\mathfrak{F}\mathfrak{B}_{\mathfrak{F},c}=cXd_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c})\;,
$$

where $d_{\mathfrak{F}} = \sum$ *ⁱ*≥⁰ $\binom{1}{i,1}$ \mathfrak{F} $\frac{d^{i}}{dX^{i}}$ (see [6, Lemma 1]). Furthermore if $\mathfrak{F}(X,Y) = X + Y + (q-1)XY$ and

 $c = \frac{\log q}{q-1}$, then $\frac{1}{c}d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c})$ is equal to the generating function of Carlitz's q-Bernoulli numbers (see the next section). This means that we get a Kaneko's type of recurrence formula for Carlitz's q-Bernoulli numbers.

$$
3. X + Y + (q - 1)XY
$$

If $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$ and $c = \frac{\log q}{q-1}$, then we can state results in the previous section as follows:

Corollary 5. *If* B *satisfies* Assumption 1*, then we have*

(i)
$$
\sum_{i=0}^{m} {m \choose i} q^{n+i} \beta_{n+i} = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} (\beta_{m+i} + \gamma_{m+i}),
$$

\n(ii)
$$
\sum_{i=0}^{m} {m \choose i} q^{n+i} \beta_{n+i} = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} \beta_{m+i} \quad \text{if } m > \text{deg } C,
$$

(iii)
$$
\sum_{i=0}^{n} {n \choose i} \{q^{n+i} - (-1)^{n-i}\} \beta_{n+i} = 0 \qquad \text{if } m = n > \deg C ,
$$

where $B_{\mathfrak{F},c} = \sum$ *ⁿ*≥⁰ $\beta_n \frac{X^n}{n!}$ and $C_{\mathfrak{F},c} = \sum_{n \geq 0}$ $\gamma_n \frac{X^n}{n!}$.

Proof. If $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$, then, by the definition of $\binom{m}{i,j}_{\mathfrak{F}}$, we have

$$
\binom{m}{i,j}_{\mathfrak{F}} = \binom{m}{i} \binom{i}{i+j-m} (q-1)^{i+j-m} . \tag{2}
$$

Hence for any $a \in \mathfrak{o}$, we have

$$
\sum_{i,j\geq 0} {m \choose i,j} \mathfrak{f}(a)^j \beta_{n+i} = \sum_{i,j\geq 0} {m \choose i} {i \choose i+j-m} (q-1)^{i+j-m} \mathfrak{f}(a)^j \beta_{n+i}
$$

$$
= \sum_{i=0}^m {m \choose i} \mathfrak{f}(a)^{n-i} \beta_{n+i} \sum_{j=m-i}^m {i \choose i+j-m} \{(q-1)\mathfrak{f}(a)^{i+j-m} \}
$$

$$
= \sum_{i=0}^m {m \choose i} \mathfrak{f}(a)^{n-i} \beta_{n+i} q^{ai}.
$$

Hence we can get what we want. \square

Let $\bar{\beta}_n(\mathfrak{F},c)$ be the coefficient of $\frac{X^n}{n!}$ in $\frac{1}{c}d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c})$, i.e., that of $c^2 \frac{X^{n+1}}{n!}$ in $\left(\frac{X^2}{e^X-1}\right)_{\mathfrak{F},c}$, then $\bar{\beta}_n(\mathfrak{F},c)$ satisfies the following Carlitz's recurrence formula ([1]):

$$
\bar{\beta}_0(\mathfrak{F}, c) = 1, \quad q(q\bar{\beta}(\mathfrak{F}, c) + 1)^n - \bar{\beta}_n(\mathfrak{F}, c) = \begin{cases} 1 & \text{for } n = 1, \\ 0 & \text{for } n > 1. \end{cases}
$$

Hence $\bar{\beta}_n(\mathfrak{F}, c)$ is equal to the *n*-th Carlitz's q-Bernoulli number. To prove this we need the following: **Lemma 4.** *If* $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$ *, then* $d_{\mathfrak{F}}$ *is a homomorphism on* $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$ *. Proof.* In this case we can write

$$
d_{\mathfrak{F}}(A) = A + (q - 1)A'
$$

for any power series $A \in \mathfrak{o}[[X]]$. Hence by Lemma 2 we have

$$
d_{\mathfrak{F}}(A *_{\mathfrak{F}} B) = A *_{\mathfrak{F}} B + (q - 1)(A *_{\mathfrak{F}} B)'
$$

= $A *_{\mathfrak{F}} B + (q - 1)\{A' *_{\mathfrak{F}} B + A *_{\mathfrak{F}} B' + (q - 1)A' *_{\mathfrak{F}} B'\}$
= $(A + (q - 1)A') *_{\mathfrak{F}} (B + (q - 1)B')$
= $d_{\mathfrak{F}}(A) *_{\mathfrak{F}} d_{\mathfrak{F}}(B)$

for any A and B in $\mathfrak{o}[[X]]$. Hence $d_{\mathfrak{F}}$ is a homomorphism on $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$. \square *Proof* (Carlitz's recurrence formula). Apply $d_{\mathfrak{F}}$ to $\mathfrak{B}_{\mathfrak{F},c} *_{\mathfrak{F}} e^X - \mathfrak{B}_{\mathfrak{F},c} = cX$, then we have $d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c}) *_{\mathfrak{F}} q e^X - d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c}) = cX - \log q$.

Hence $\bar{\beta}_n(\mathfrak{F}, c)$ satisfies Carlitz's recurrence formula. \Box

Finally we give another proof of Corollary 5.

Lemma 5. *If* $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$, then the $*_\mathfrak{F}$ -product is written by

$$
A *_{\mathfrak{F}} X^n = d_{\mathfrak{F}}^n(A)X^n
$$

for any non-negative integer n*.*

Proof. It is sufficient to prove for $\frac{X^i}{i!} *_{\mathfrak{F}} \frac{X^j}{j!}$ ($i \ge 0$ and $j \ge 0$). By the definition of $*_\mathfrak{F}$ and (2), we have

$$
\frac{X^i}{i!} *_{\mathfrak{F}} \frac{X^j}{j!} = \sum_{m \geq 0} {m \choose i,j} \frac{X^m}{\mathfrak{m}!}
$$

=
$$
\sum_{m=j}^{i+j} {m \choose i} {i \choose i+j-m} (q-1)^{i+j-m} \frac{X^m}{m!}.
$$

On the other hand

$$
d_{\mathfrak{F}}^{i} \left(\frac{X^{j}}{j!} \right) \frac{X^{i}}{i!} = \sum_{m=0}^{i} {i \choose m} (q-1)^{m} \frac{d^{m}}{dX^{m}} \left(\frac{X^{j}}{j!} \right) \frac{X^{i}}{i!}
$$

=
$$
\sum_{m=0}^{i} {i \choose m} {i+j-m \choose i} (q-1)^{m} \frac{X^{i+j-m}}{(i+j-m)!}.
$$

Hence we have what we want. \square

Remark 1. If $\mathfrak{F} = X + Y + (q - 1)XY$ and $c = \frac{\log q}{q-1}$, then, by Lemma 5, we can get

$$
A(X) *_{\mathfrak{F}} e^{\mathfrak{f}(a)} = A(q^a X) e^{\mathfrak{f}(a)}
$$

for any power series $A \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$. By this we can get Corollary 5 from Lemma 1 not using Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$ (see [6, Lemma 1 and Proposition 4]).

REFERENCES

1. L. Carlitz, q-Bernoulli numbers and polynomials, J. Duke Math. J. Vol. **15** (1948), 987-1000.

2. M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad. Vol. **71**, Ser. A, No. 8 (1995), 192-193.

3. J. Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J. Number Theory **31** (1989), 346-362.

4. J. Satoh, A construction of q-analogue of Dedekind sums, Nagoya Math. J. Vol. **127** (1992), 129-143.

5. J. Satoh, Construction of q-analogue by using Stirling numbers, Japan. J. Math. Vol. **20**, No. 1 (1994), 73-91.

6. J. Satoh, Another look at the q-analogue from the viewpoint of Formal groups (preprint).

Graduate School of Human Informatics, Nagoya University. Furo-cho Chikusa-ku, Nagoya 464-8601, Japan *E-mail address*: jsatoh@math.human.nagoya-u.ac.jp