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Abstract. Kaneko [2] proved a new recurrence formula for the Bernoulli numbers and gave two proofs.

One of them was due to Don Zagier. We shall apply Zagier’s idea to the q-Bernoulli numbers attached
to formal group.

1. Generalization of Kaneko’s recurrence formula

Let B = B(X) be the generating function of the Bernoulli numbers, i.e. ,

B =
X

eX − 1
,

then it is anti-invariant under a map: B �→ BeX , i.e. ,

B(X)eX = B(−X) .

Zagier gave another proof of Kaneko’s recurrence formula for the Bernoulli numbers by using this property
[2]. On the other hand because of B(−X) = B(X)+X, we can see that B is transformed to the sum of a
polynomial and itself under the above map. We use the second property in order to generalize Kaneko’s
recurrence formula and prove a formula for the q-Bernoulli numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:

Assumption 1.

BeX = B + C ,

where C is a polynomial.

If C = X, then B is equal to B, and if C = X2, then B is essentially equal to the generating function
of B̃n which was defined in [2], i.e. ,

∑
n≥0

B̃n
Xn

n!
=

(
X2

eX − 1

)′
.

The starting point of our argument is the following trivial lemma:
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Lemma 1. For any power series A and non-negative integer n, we have

A(n)eX =
n∑

i=0

(
n

i

)
(−1)n−i(AeX)(i) ,

where A(n) means the n-th derivative of A.

Proof. Because of A = (AeX)e−X , we can get what we want.

Set A = B and compare the coefficient of Xm

m! for any non-negative integer m, then we have a
generalization of Kaneko’s recurrence formula as follows:

Proposition 1. If B satisfies Assumption1, then we have
m∑

i=0

(
m

i

)
bn+i =

n∑
i=0

(
n

i

)
(−1)n−i(bm+i + cm+i) ,

where B =
∑

n≥0

bn
Xn

n! and C =
∑
n≥0

cn
Xn

n! .

If m > deg C, then we have

Corollary 1.
m∑

i=0

(
m

i

)
bn+i =

n∑
i=0

(
n

i

)
(−1)n−ibm+i .

Furthermore if m = n, then we have

Corollary 2.
n∑

i=0
i �≡n mod 2

(
n

i

)
bn+i = 0 .

If C = X, then there is no new information about the Bernoulli numbers. But if C = X2 , then this is
equivalent to Kaneko’s recurrence formula.

2. q-recurrence formula

In this section we shall extend results in the previous section for the q-Bernoulli numbers attached to
formal group. Let q be an indeterminate and let o be the formal power series ring in q − 1 over some
Q-algebra. Furthermore let F(X, Y ) be a 1-dimensional commutative formal group defined over o and
let f(X) be an isomorphism from the additive formal group X +Y to F(X, Y ). We note that there exists
a unique isomorphism fF(X) from X + Y to F(X, Y ) defined over o such that f′F(0) = 1. And f(X) is
equal to fF(cX) for some invertible element c ∈ o×. Conversely for any c ∈ o×, fF(cX) is an isomorphism
from X + Y to F(X, Y ). Throughout this paper we assume that
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Assumption 2.

ordq−1f
(n)
F (0) ≥ n − 1 for all n ≥ 1 .

We note that by this assumption Fn(A, B) (see Definition 1 below) and f(a) are convergent in o for
any A, B ∈ o[[X]] and a ∈ o as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n, we denote the expansion of F(X, Y )n by

F(X, Y )n =
∑

i,j≥0

(
n

i, j

)
F

XiY j ,

and we set

Fn(A, B) =
∑

i,j≥0

(
n

i, j

)
F

aibj

for any power series A =
∑

n≥0

an
Xn

n! and B =
∑
n≥0

bn
Xn

n! in o[[X]]. Then we define the ∗F-product by

A ∗F B =
∑
n≥0

Fn(A, B)
Xn

n!
.

We can prove (o[[X]], +, ∗F) is an o-algebra (see [6, Proposition 1]). Next we extend the following map:

Xn �→ cn X ∗F · · · ∗F X︸ ︷︷ ︸
n times

o-linearly. Hence we can get a natural homomorphism from (o[[X]], +, ·) to (o[[X]], +, ∗F). We call this
map q-operator and denote the image of A ∈ o[[X]] under the q-operator by AF,c. We define a q-analogue
of power series A attached to F and c by AF,c. The following proposition is essential for our theory of
q-analogue (see [6, Theorem 1 and Proposition 2]).

Proposition 2. For any a, b ∈ o, we have
(i) (eaX)F,c = ef(a)X ,

(ii) ef(a)X ∗F ef(b)X = ef(a+b)X .

We define the q-Bernoulli numbers βn(F, c) attached to F and c as follows:

Definition 2. For each non-negative integer n, we define the n-th q-Bernoulli number βn(F, c) attached
to F(X, Y ) ∈ o[[X, Y ]] and c ∈ o× by the coefficient of Xn

n! in BF,c =
(

X
eX−1

)
F,c

.

We note that if F = X + Y + (q − 1)XY and c = log q
q−1 , then f(X) = qX−1

q−1 and βn(F, c) satisfies the
following recurrence formula:

β0(F, c) = 1, (qβ(F, c) + 1)n − βn(F, c) =

{
log q
q−1 for n = 1 ,

0 for n > 1 ,

where we use the usual convention about replacing β(F, c)i by βi(F, c) for each non-negative integer i.
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Proof. Apply the q-operator to BeX −B = X, then we have BF,c∗FeX −BF,c = cX and Fn(BF,c, e
X) =

(qβ(F, c) + 1)n. Hence the above recurrence formula holds.

Now we may get a q-analogue of Proposition 1 by applying the q-operator to Lemma 1, but it is
unknown the commutativity of the q-operator and the derivative on o[[X]]. So we need to take another
approach to get a q-analogue of Lemma 1.

Lemma 2. For any power series A, B and non-negative integer n, we have

(A ∗F B)(n) =
∑
i,j≥0

(
n

i, j

)
F

A(i) ∗F B(j) . (1)

Proof. For any non-negative integer m, the coefficient of Xm

m! in the left hand side of (1) is equal to

Fm+n(A, B) =
∑

i,j≥0

(
m + n

i, j

)
F

aibj .

On the other hand that in the right hand of (1) is equal to∑
i,j≥0

(
n

i, j

)
F

F(A(i), B(j)) =
∑

i,j≥0

(
n

i, j

)
F

∑
k,l≥0

(
m

k, l

)
F

ai+kbj+l .

Hence it is sufficient to show that(
m + n

i, j

)
F

=
∑

0≤k≤i
0≤l≤j

(
m

k, l

)
F

(
n

i − k, j − l

)
F

for all i ≥ 0 and j ≥ 0. Because of F(X, Y )m+n = F(X, Y )mF(X, Y )n, we can get what we want.

Apply this lemma to A ∗F ef(1)X and ef(−1)X , then we have

Lemma 3.

A(n) ∗F ef(1)X =
∑

i,j≥0

(
n

i, j

)
F

f(−1)j(A ∗F ef(1)X)(i) .

This is a q-analogue of Lemma 1. If B satisfies Assumption 1, by applying the q-operator, we have

BF,c ∗F ef(1)X = BF,c + CF,c .

If C is a polynomial, then CF,c is also a polynomial and deg C = deg CF,c (see [6, Lemma 2]). Hence we
have the following:

Proposition 3. If B satisfies Assumption 1，then we have∑
i,j≥0

(
m

i, j

)
F

f(1)jβn+i =
∑

i,j≥0

(
n

i, j

)
F

f(−1)j(βm+i + γm+i)

for any non-negative integer m and n, where BF,c =
∑

n≥0

βn
Xn

n! and CF,c =
∑

n≥0

γn
Xn

n! .
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If m > deg C, then we have

Corollary 3. ∑
i,j≥0

(
m

i, j

)
F

f(1)jβn+i =
∑
i,j≥0

(
n

i, j

)
F

f(−1)jβm+i .

Furthermore if m = n, then we have

Corollary 4. ∑
i,j≥0

(
n

i, j

)
F

{f(1)j − f(−1)j}βn+i = 0 .

Hence if C = X, then we get a recurrence formula for βn = βn(F, c). On the other hand if C = X2 ,
then βn is the coefficient of Xn

n!
in(
X2

eX − 1

)
F,c

= cX ∗F BF,c = cXdF(BF,c) ,

where dF =
∑
i≥0

(
1

i,1

)
F

di

dXi (see [6, Lemma 1]). Furthermore if F(X, Y ) = X + Y + (q − 1)XY and

c = log q
q−1 , then 1

cdF(BF,c) is equal to the generating function of Carlitz’s q-Bernoulli numbers (see the
next section). This means that we get a Kaneko’s type of recurrence formula for Carlitz’s q-Bernoulli
numbers.

3. X + Y + (q − 1)XY

If F(X, Y ) = X + Y + (q − 1)XY and c = log q
q−1 , then we can state results in the previous section as

follows:

Corollary 5. If B satisfies Assumption 1, then we have

(i)
m∑

i=0

(
m
i

)
qn+iβn+i =

n∑
i=0

(
n
i

)
(−1)n−i(βm+i + γm+i) ,

(ii)
m∑

i=0

(
m
i

)
qn+iβn+i =

n∑
i=0

(
n
i

)
(−1)n−iβm+i if m > deg C ,

(iii)
n∑

i=0

(
n
i

){qn+i − (−1)n−i}βn+i = 0 if m = n > deg C ,

where BF,c =
∑
n≥0

βn
Xn

n! and CF,c =
∑
n≥0

γn
Xn

n! .

Proof. If F(X, Y ) = X + Y + (q − 1)XY , then, by the definition of
(

m
i,j

)
F
, we have

(
m

i, j

)
F

=
(

m

i

)(
i

i + j − m

)
(q − 1)i+j−m . (2)
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Hence for any a ∈ o, we have

∑
i,j≥0

(
m

i, j

)
F

f(a)jβn+i =
∑

i,j≥0

(
m

i

)(
i

i + j − m

)
(q − 1)i+j−mf(a)jβn+i

=
m∑

i=0

(
m

i

)
f(a)n−iβn+i

m∑
j=m−i

(
i

i + j − m

)
{(q − 1)f(a)}i+j−m

=
m∑

i=0

(
m

i

)
f(a)n−iβn+iq

ai .

Hence we can get what we want.

Let β̄n(F, c) be the coefficient of Xn

n! in 1
cdF(BF,c), i.e. , that of c2 Xn+1

n! in
(

X2

eX−1

)
F,c

, then β̄n(F, c)
satisfies the following Carlitz’s recurrence formula ([1]):

β̄0(F, c) = 1, q(qβ̄(F, c) + 1)n − β̄n(F, c) =

{
1 for n = 1 ,

0 for n > 1 .

Hence β̄n(F, c) is equal to the n-th Carlitz’s q-Bernoulli number. To prove this we need the following:

Lemma 4. If F(X, Y ) = X + Y + (q − 1)XY , then dF is a homomorphism on (o[[X]], +, ∗F).

Proof. In this case we can write
dF(A) = A + (q − 1)A′

for any power series A ∈ o[[X]]. Hence by Lemma 2 we have

dF(A ∗F B) = A ∗F B + (q − 1)(A ∗F B)′

= A ∗F B + (q − 1){A′ ∗F B + A ∗F B′ + (q − 1)A′ ∗F B′}
= (A + (q − 1)A′) ∗F (B + (q − 1)B′)
= dF(A) ∗F dF(B)

for any A and B in o[[X]]. Hence dF is a homomorphism on (o[[X]], +, ∗F).

Proof (Carlitz’s recurrence formula). Apply dF to BF,c ∗F eX − BF,c = cX, then we have

dF(BF,c) ∗F qeX − dF(BF,c) = cX − log q .

Hence β̄n(F, c) satisfies Carlitz’s recurrence formula.

Finally we give another proof of Corollary 5.

Lemma 5. If F(X, Y ) = X + Y + (q − 1)XY , then the ∗F-product is written by

A ∗F Xn = dn
F(A)Xn

for any non-negative integer n.
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Proof. It is sufficient to prove for Xi

i!
∗F

Xj

j!
(i ≥ 0 and j ≥ 0). By the definition of ∗F and (2), we have

Xi

i!
∗F

Xj

j!
=

∑
m≥0

(
m

i, j

)
F

Xm

m!

=
i+j∑
m=j

(
m

i

)(
i

i + j − m

)
(q − 1)i+j−m Xm

m!
.

On the other hand

di
F

(
Xj

j!

)
Xi

i!
=

i∑
m=0

(
i

m

)
(q − 1)m dm

dXm

(
Xj

j!

)
Xi

i!

=
i∑

m=0

(
i

m

)(
i + j − m

i

)
(q − 1)m Xi+j−m

(i + j − m)!
.

Hence we have what we want.

Remark 1. If F = X + Y + (q − 1)XY and c = log q
q−1 , then, by Lemma 5, we can get

A(X) ∗F ef(a) = A(qaX)ef(a)

for any power series A ∈ o[[X]] and a ∈ o. By this we can get Corollary 5 from Lemma 1 not using
Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for F(X, Y ) = X + Y + (q − 1)XY (see [6, Lemma 1
and Proposition 4]).
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