A RECURRENCE FORMULA FOR THE q-BERNOULLI NUMBERS ATTACHED TO FORMAL GROUP

JUNYA SATOH

ABSTRACT. Kaneko [2] proved a new recurrence formula for the Bernoulli numbers and gave two proofs. One of them was due to Don Zagier. We shall apply Zagier's idea to the q-Bernoulli numbers attached to formal group.

1. Generalization of Kaneko's recurrence formula

Let $\mathfrak{B} = \mathfrak{B}(X)$ be the generating function of the Bernoulli numbers, i.e.,

$$\mathfrak{B} = \frac{X}{e^X - 1} \; ,$$

then it is anti-invariant under a map: $\mathfrak{B} \mapsto \mathfrak{B} e^X$, i.e.,

$$\mathfrak{B}(X)e^X = \mathfrak{B}(-X)$$
.

Zagier gave another proof of Kaneko's recurrence formula for the Bernoulli numbers by using this property [2]. On the other hand because of $\mathfrak{B}(-X) = \mathfrak{B}(X) + X$, we can see that \mathfrak{B} is transformed to the sum of a polynomial and itself under the above map. We use the second property in order to generalize Kaneko's recurrence formula and prove a formula for the q-Bernoulli numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:

Assumption 1.

$$Be^X = B + C$$
,

where C is a polynomial.

If C = X, then B is equal to \mathfrak{B} , and if $C = X^2$, then B is essentially equal to the generating function of \tilde{B}_n which was defined in [2], i.e.,

$$\sum_{n\geq 0} \tilde{B}_n \frac{X^n}{n!} = \left(\frac{X^2}{e^X - 1}\right)'.$$

The starting point of our argument is the following trivial lemma:

Lemma 1. For any power series A and non-negative integer n, we have

$$A^{(n)}e^{X} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} (Ae^{X})^{(i)} ,$$

where $A^{(n)}$ means the n-th derivative of A.

Proof. Because of $A = (Ae^X)e^{-X}$, we can get what we want. \Box

Set A = B and compare the coefficient of $\frac{X^m}{m!}$ for any non-negative integer m, then we have a generalization of Kaneko's recurrence formula as follows:

Proposition 1. If B satisfies Assumption1, then we have

$$\sum_{i=0}^{m} \binom{m}{i} b_{n+i} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} (b_{m+i} + c_{m+i}) ,$$

where $B = \sum_{n \ge 0} b_n \frac{X^n}{n!}$ and $C = \sum_{n \ge 0} c_n \frac{X^n}{n!}$.

If $m > \deg C$, then we have

Corollary 1.

$$\sum_{i=0}^{m} \binom{m}{i} b_{n+i} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{n-i} b_{m+i} .$$

Furthermore if m = n, then we have

Corollary 2.

$$\sum_{\substack{i=0\\ \not\equiv n \mod 2}}^{n} \binom{n}{i} b_{n+i} = 0$$

i

If C = X, then there is no new information about the Bernoulli numbers. But if $C = X^2$, then this is equivalent to Kaneko's recurrence formula.

2. *q*-recurrence formula

In this section we shall extend results in the previous section for the q-Bernoulli numbers attached to formal group. Let q be an indeterminate and let \mathfrak{o} be the formal power series ring in q-1 over some \mathbb{Q} -algebra. Furthermore let $\mathfrak{F}(X, Y)$ be a 1-dimensional commutative formal group defined over \mathfrak{o} and let $\mathfrak{f}(X)$ be an isomorphism from the additive formal group X + Y to $\mathfrak{F}(X, Y)$. We note that there exists a unique isomorphism $\mathfrak{f}_{\mathfrak{F}}(X)$ from X + Y to $\mathfrak{F}(X, Y)$ defined over \mathfrak{o} such that $\mathfrak{f}'_{\mathfrak{F}}(0) = 1$. And $\mathfrak{f}(X)$ is equal to $\mathfrak{f}_{\mathfrak{F}}(cX)$ for some invertible element $c \in \mathfrak{o}^{\times}$. Conversely for any $c \in \mathfrak{o}^{\times}$, $\mathfrak{f}_{\mathfrak{F}}(cX)$ is an isomorphism from X + Y to $\mathfrak{F}(X, Y)$. Throughout this paper we assume that

Assumption 2.

$$\operatorname{ord}_{q-1} \mathfrak{f}_{\mathfrak{F}}^{(n)}(0) \ge n-1 \quad \text{for all } n \ge 1$$

We note that by this assumption $\mathfrak{F}_n(A, B)$ (see Definition 1 below) and $\mathfrak{f}(a)$ are convergent in \mathfrak{o} for any $A, B \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$ as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n, we denote the expansion of $\mathfrak{F}(X,Y)^n$ by

$$\mathfrak{F}(X,Y)^n = \sum_{i,j \ge 0} \binom{n}{i,j} \mathfrak{F}^{X^i Y^j}$$

and we set

$$\mathfrak{F}_n(A,B) = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} a_i b_j$$

for any power series $A = \sum_{n \ge 0} a_n \frac{X^n}{n!}$ and $B = \sum_{n \ge 0} b_n \frac{X^n}{n!}$ in $\mathfrak{o}[[X]]$. Then we define the $*\mathfrak{F}$ -product by

$$A *_{\mathfrak{F}} B = \sum_{n \ge 0} \mathfrak{F}_n(A, B) \frac{X^n}{n!}$$

We can prove $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$ is an \mathfrak{o} -algebra (see [6, Proposition 1]). Next we extend the following map:

$$X^n \mapsto c^n \underbrace{X *_{\mathfrak{F}} \cdots *_{\mathfrak{F}} X}_{n \text{ times}}$$

 \mathfrak{o} -linearly. Hence we can get a natural homomorphism from $(\mathfrak{o}[[X]], +, \cdot)$ to $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$. We call this map q-operator and denote the image of $A \in \mathfrak{o}[[X]]$ under the q-operator by $A_{\mathfrak{F},c}$. We define a q-analogue of power series A attached to \mathfrak{F} and c by $A_{\mathfrak{F},c}$. The following proposition is essential for our theory of q-analogue (see [6, Theorem 1 and Proposition 2]).

Proposition 2. For any $a, b \in \mathfrak{o}$, we have

(i)
$$(e^{aX})_{\mathfrak{F},c} = e^{\mathfrak{f}(a)X}$$
,
(ii) $e^{\mathfrak{f}(a)X} *_{\mathfrak{F}} e^{\mathfrak{f}(b)X} = e^{\mathfrak{f}(a+b)X}$.

We define the q-Bernoulli numbers $\beta_n(\mathfrak{F}, c)$ attached to \mathfrak{F} and c as follows:

Definition 2. For each non-negative integer n, we define the n-th q-Bernoulli number $\beta_n(\mathfrak{F}, c)$ attached to $\mathfrak{F}(X, Y) \in \mathfrak{o}[[X, Y]]$ and $c \in \mathfrak{o}^{\times}$ by the coefficient of $\frac{X^n}{n!}$ in $\mathfrak{B}_{\mathfrak{F},c} = \left(\frac{X}{e^X - 1}\right)_{\mathfrak{F},c}$.

We note that if $\mathfrak{F} = X + Y + (q-1)XY$ and $c = \frac{\log q}{q-1}$, then $\mathfrak{f}(X) = \frac{q^X-1}{q-1}$ and $\beta_n(\mathfrak{F}, c)$ satisfies the following recurrence formula:

$$\beta_0(\mathfrak{F},c) = 1, \quad (q\beta(\mathfrak{F},c)+1)^n - \beta_n(\mathfrak{F},c) = \begin{cases} \frac{\log q}{q-1} & \text{for } n=1 \\ 0 & \text{for } n>1 \end{cases},$$

where we use the usual convention about replacing $\beta(\mathfrak{F}, c)^i$ by $\beta_i(\mathfrak{F}, c)$ for each non-negative integer *i*.

JUNYA SATOH

Proof. Apply the *q*-operator to $\mathfrak{B}e^X - \mathfrak{B} = X$, then we have $\mathfrak{B}_{\mathfrak{F},c} *_{\mathfrak{F}}e^X - \mathfrak{B}_{\mathfrak{F},c} = cX$ and $\mathfrak{F}_n(\mathfrak{B}_{\mathfrak{F},c}, e^X) = (q\beta(\mathfrak{F},c)+1)^n$. Hence the above recurrence formula holds. \square

Now we may get a q-analogue of Proposition 1 by applying the q-operator to Lemma 1, but it is unknown the commutativity of the q-operator and the derivative on $\mathfrak{o}[[X]]$. So we need to take another approach to get a q-analogue of Lemma 1.

Lemma 2. For any power series A, B and non-negative integer n, we have

$$(A *_{\mathfrak{F}} B)^{(n)} = \sum_{i,j \ge 0} \binom{n}{i,j}_{\mathfrak{F}} A^{(i)} *_{\mathfrak{F}} B^{(j)} .$$
⁽¹⁾

Proof. For any non-negative integer m, the coefficient of $\frac{X^m}{m!}$ in the left hand side of (1) is equal to

$$\mathfrak{F}_{m+n}(A,B) = \sum_{i,j\geq 0} \binom{m+n}{i,j}_{\mathfrak{F}} a_i b_j .$$

On the other hand that in the right hand of (1) is equal to

$$\sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} (A^{(i)}, B^{(j)}) = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \sum_{k,l\geq 0} \binom{m}{k,l}_{\mathfrak{F}} a_{i+k} b_{j+l} \cdot A^{(j)}_{\mathfrak{F}} a_{i+k} b_{j+k} \cdot A^{(j)}_{\mathfrak{F}} a_{i+k} b_{j+k} \cdot A^{(j)}_{\mathfrak{F}} a_{i+k} b_{j+k} \cdot A^{(j)}_{\mathfrak{F}} a_{i+k} b_{j+k} \cdot A^{(j)}_{\mathfrak{F}} a_{i+k} \cdot A^$$

Hence it is sufficient to show that

$$\binom{m+n}{i,j}_{\mathfrak{F}} = \sum_{\substack{0 \le k \le i \\ 0 \le l \le j}} \binom{m}{k,l}_{\mathfrak{F}} \binom{n}{i-k,j-l}_{\mathfrak{F}}$$

for all $i \ge 0$ and $j \ge 0$. Because of $\mathfrak{F}(X,Y)^{m+n} = \mathfrak{F}(X,Y)^m \mathfrak{F}(X,Y)^n$, we can get what we want. \square Apply this lemma to $A *_{\mathfrak{F}} e^{\mathfrak{f}(1)X}$ and $e^{\mathfrak{f}(-1)X}$, then we have

Lemma 3.

$$A^{(n)} \ast_{\mathfrak{F}} e^{\mathfrak{f}(1)X} = \sum_{i,j \ge 0} \binom{n}{i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j (A \ast_{\mathfrak{F}} e^{\mathfrak{f}(1)X})^{(i)}$$

This is a q-analogue of Lemma 1. If B satisfies Assumption 1, by applying the q-operator, we have

$$B_{\mathfrak{F},c} *_{\mathfrak{F}} e^{\mathfrak{f}(1)X} = B_{\mathfrak{F},c} + C_{\mathfrak{F},c} .$$

If C is a polynomial, then $C_{\mathfrak{F},c}$ is also a polynomial and deg $C = \deg C_{\mathfrak{F},c}$ (see [6, Lemma 2]). Hence we have the following:

Proposition 3. If B satisfies Assumption 1, then we have

$$\sum_{i,j\geq 0} \binom{m}{i,j}_{\mathfrak{F}} \mathfrak{f}(1)^j \beta_{n+i} = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j (\beta_{m+i} + \gamma_{m+i})$$

for any non-negative integer m and n, where $B_{\mathfrak{F},c} = \sum_{n\geq 0} \beta_n \frac{X^n}{n!}$ and $C_{\mathfrak{F},c} = \sum_{n\geq 0} \gamma_n \frac{X^n}{n!}$.

If $m > \deg C$, then we have

Corollary 3.

$$\sum_{i,j\geq 0} \binom{m}{i,j}_{\mathfrak{F}} \mathfrak{f}(1)^j \beta_{n+i} = \sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \mathfrak{f}(-1)^j \beta_{m+i} \ .$$

Furthermore if m = n, then we have

Corollary 4.

$$\sum_{i,j\geq 0} \binom{n}{i,j}_{\mathfrak{F}} \{\mathfrak{f}(1)^j - \mathfrak{f}(-1)^j\}\beta_{n+i} = 0 \ .$$

Hence if C = X, then we get a recurrence formula for $\beta_n = \beta_n(\mathfrak{F}, c)$. On the other hand if $C = X^2$, then β_n is the coefficient of $\frac{X^n}{n!}$ in

$$\left(\frac{X^2}{e^X - 1}\right)_{\mathfrak{F},c} = cX *_{\mathfrak{F}} \mathfrak{B}_{\mathfrak{F},c} = cXd_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c}) ,$$

where $d_{\mathfrak{F}} = \sum_{i \ge 0} {\binom{1}{i,1}}_{\mathfrak{F}} \frac{d^i}{dX^i}$ (see [6, Lemma 1]). Furthermore if $\mathfrak{F}(X,Y) = X + Y + (q-1)XY$ and

 $c = \frac{\log q}{q-1}$, then $\frac{1}{c} d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c})$ is equal to the generating function of Carlitz's *q*-Bernoulli numbers (see the next section). This means that we get a Kaneko's type of recurrence formula for Carlitz's *q*-Bernoulli numbers.

3.
$$X + Y + (q - 1)XY$$

If $\mathfrak{F}(X,Y) = X + Y + (q-1)XY$ and $c = \frac{\log q}{q-1}$, then we can state results in the previous section as follows:

Corollary 5. If B satisfies Assumption 1, then we have

(i)
$$\sum_{i=0}^{m} {m \choose i} q^{n+i} \beta_{n+i} = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} (\beta_{m+i} + \gamma_{m+i}) ,$$

(ii) $\sum_{i=0}^{m} {m \choose i} q^{n+i} \beta_{n+i} = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} \beta_{m+i} \quad if \ m > \deg C ,$

(iii)
$$\sum_{i=0}^{n} {n \choose i} \{q^{n+i} - (-1)^{n-i}\} \beta_{n+i} = 0$$
 if $m = n > \deg C$,

where $B_{\mathfrak{F},c} = \sum_{n\geq 0} \beta_n \frac{X^n}{n!}$ and $C_{\mathfrak{F},c} = \sum_{n\geq 0} \gamma_n \frac{X^n}{n!}$.

Proof. If $\mathfrak{F}(X,Y) = X + Y + (q-1)XY$, then, by the definition of $\binom{m}{i,j}_{\mathfrak{F}}$, we have

$$\binom{m}{i,j}_{\mathfrak{F}} = \binom{m}{i} \binom{i}{(i+j-m)} (q-1)^{i+j-m} .$$
⁽²⁾

Hence for any $a \in \mathfrak{o}$, we have

$$\sum_{i,j\geq 0} \binom{m}{i,j}_{\mathfrak{F}} \mathfrak{f}(a)^{j} \beta_{n+i} = \sum_{i,j\geq 0} \binom{m}{i} \binom{i}{(i+j-m)} (q-1)^{i+j-m} \mathfrak{f}(a)^{j} \beta_{n+i}$$
$$= \sum_{i=0}^{m} \binom{m}{i} \mathfrak{f}(a)^{n-i} \beta_{n+i} \sum_{j=m-i}^{m} \binom{i}{(i+j-m)} \{(q-1)\mathfrak{f}(a)\}^{i+j-m}$$
$$= \sum_{i=0}^{m} \binom{m}{i} \mathfrak{f}(a)^{n-i} \beta_{n+i} q^{ai} .$$

Hence we can get what we want. \Box

Let $\bar{\beta}_n(\mathfrak{F}, c)$ be the coefficient of $\frac{X^n}{n!}$ in $\frac{1}{c}d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c})$, i.e., that of $c^2 \frac{X^{n+1}}{n!}$ in $\left(\frac{X^2}{e^X-1}\right)_{\mathfrak{F},c}$, then $\bar{\beta}_n(\mathfrak{F}, c)$ satisfies the following Carlitz's recurrence formula ([1]):

$$\bar{\beta}_0(\mathfrak{F},c) = 1, \quad q(q\bar{\beta}(\mathfrak{F},c)+1)^n - \bar{\beta}_n(\mathfrak{F},c) = \begin{cases} 1 & \text{for } n = 1 \\ 0 & \text{for } n > 1 \end{cases},$$

Hence $\bar{\beta}_n(\mathfrak{F}, c)$ is equal to the *n*-th Carlitz's *q*-Bernoulli number. To prove this we need the following: Lemma 4. If $\mathfrak{F}(X, Y) = X + Y + (q - 1)XY$, then $d_{\mathfrak{F}}$ is a homomorphism on $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$. *Proof.* In this case we can write

$$d_{\mathfrak{F}}(A) = A + (q-1)A'$$

for any power series $A \in \mathfrak{o}[[X]]$. Hence by Lemma 2 we have

$$d_{\mathfrak{F}}(A *_{\mathfrak{F}} B) = A *_{\mathfrak{F}} B + (q-1)(A *_{\mathfrak{F}} B)'$$

= $A *_{\mathfrak{F}} B + (q-1)\{A' *_{\mathfrak{F}} B + A *_{\mathfrak{F}} B' + (q-1)A' *_{\mathfrak{F}} B'\}$
= $(A + (q-1)A') *_{\mathfrak{F}} (B + (q-1)B')$
= $d_{\mathfrak{F}}(A) *_{\mathfrak{F}} d_{\mathfrak{F}}(B)$

for any A and B in $\mathfrak{o}[[X]]$. Hence $d_{\mathfrak{F}}$ is a homomorphism on $(\mathfrak{o}[[X]], +, *_{\mathfrak{F}})$. \square

Proof (Carlitz's recurrence formula). Apply $d_{\mathfrak{F}}$ to $\mathfrak{B}_{\mathfrak{F},c} *_{\mathfrak{F}} e^X - \mathfrak{B}_{\mathfrak{F},c} = cX$, then we have $d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c}) *_{\mathfrak{F}} q e^X - d_{\mathfrak{F}}(\mathfrak{B}_{\mathfrak{F},c}) = cX - \log q$.

Hence $\bar{\beta}_n(\mathfrak{F}, c)$ satisfies Carlitz's recurrence formula.

Finally we give another proof of Corollary 5.

Lemma 5. If $\mathfrak{F}(X,Y) = X + Y + (q-1)XY$, then the $*\mathfrak{F}$ -product is written by

$$A *_{\mathfrak{F}} X^n = d^n_{\mathfrak{F}}(A) X^n$$

for any non-negative integer n.

Proof. It is sufficient to prove for $\frac{X^i}{i!} *_{\mathfrak{F}} \frac{X^j}{j!}$ $(i \ge 0 \text{ and } j \ge 0)$. By the definition of $*_{\mathfrak{F}}$ and (2), we have

$$\frac{X^i}{i!} * \mathfrak{F} \frac{X^j}{j!} = \sum_{m \ge 0} \binom{m}{i, j} \frac{X^m}{\mathfrak{F}}$$
$$= \sum_{m=j}^{i+j} \binom{m}{i} \binom{i}{(i+j-m)} (q-1)^{i+j-m} \frac{X^m}{m!} .$$

On the other hand

$$d_{\mathfrak{F}}^{i}\left(\frac{X^{j}}{j!}\right)\frac{X^{i}}{i!} = \sum_{m=0}^{i} \binom{i}{m}(q-1)^{m}\frac{d^{m}}{dX^{m}}\left(\frac{X^{j}}{j!}\right)\frac{X^{i}}{i!}$$
$$= \sum_{m=0}^{i} \binom{i}{m}\binom{i+j-m}{i}(q-1)^{m}\frac{X^{i+j-m}}{(i+j-m)!}.$$

Hence we have what we want. \Box

Remark 1. If $\mathfrak{F} = X + Y + (q-1)XY$ and $c = \frac{\log q}{q-1}$, then, by Lemma 5, we can get

$$A(X) *_{\mathfrak{F}} e^{\mathfrak{f}(a)} = A(q^a X) e^{\mathfrak{f}(a)}$$

for any power series $A \in \mathfrak{o}[[X]]$ and $a \in \mathfrak{o}$. By this we can get Corollary 5 from Lemma 1 not using Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for $\mathfrak{F}(X, Y) = X + Y + (q-1)XY$ (see [6, Lemma 1 and Proposition 4]).

References

1. L. CARLITZ, q-Bernoulli numbers and polynomials, J. Duke Math. J. Vol. 15 (1948), 987-1000.

2. M. KANEKO, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad. Vol. 71, Ser. A, No. 8 (1995), 192-193.

3. J. SATOH, q-analogue of Riemann's ζ -function and q-Euler numbers, J. Number Theory **31** (1989), 346-362.

4. J. SATOH, A construction of q-analogue of Dedekind sums, Nagoya Math. J. Vol. 127 (1992), 129-143.

5. J. SATOH, Construction of q-analogue by using Stirling numbers, Japan. J. Math. Vol. 20, No. 1 (1994), 73-91.

6. J. SATOH, Another look at the q-analogue from the viewpoint of Formal groups (preprint).

GRADUATE SCHOOL OF HUMAN INFORMATICS, NAGOYA UNIVERSITY. FURO-CHO CHIKUSA-KU, NAGOYA 464-8601, JAPAN *E-mail address*: jsatoh@math.human.nagoya-u.ac.jp