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ABSTRACT. Kaneko [2] proved a new recurrence formula for the Bernoulli numbers and gave two proofs.
One of them was due to Don Zagier. We shall apply Zagier’s idea to the ¢g-Bernoulli numbers attached
to formal group.

1. Generalization of Kaneko’s recurrence formula

Let 8B = B(X) be the generating function of the Bernoulli numbers, i.e. ,

B
eX —1"

then it is anti-invariant under a map: B — BeX | i.e. |
B(X)eX =B(-X) .

Zagier gave another proof of Kaneko’s recurrence formula for the Bernoulli numbers by using this property
[2]. On the other hand because of B(—X) = B(X)+ X, we can see that B is transformed to the sum of a
polynomial and itself under the above map. We use the second property in order to generalize Kaneko’s
recurrence formula and prove a formula for the g-Bernoulli numbers attached to formal group.

First we suppose a power series B in X which satisfies the following:

Assumption 1.
BeX =B+ C,
where C' is a polynomial.

If C = X, then B is equal to B8, and if C = X?, then B is essentially equal to the generating function

of B,, which was defined in [2], i.e. ,
- X" x2
> a5 (F) -

n>0

The starting point of our argument is the following trivial lemma:
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Lemma 1. For any power series A and non-negative integer n, we have
" /n
A(n) X _ _1\n—ti X\ (2)
X =3 ()i,
=0
where A™ means the n-th derivative of A.

Proof. Because of A = (AeX)e™X, we can get what we want. []

Set A = B and compare the coefficient of )fn—T for any non-negative integer m, then we have a
generalization of Kaneko’s recurrence formula as follows:

Proposition 1. If B satisfies Assumptionl, then we have

S (7)o = X (1) 0 s+ i)
i=0 i=0
where B =Y ann—T and C =3 chn—T
n>0 n>0

If m > deg C, then we have
Corollary 1.
Z ( . >bn+i = Z (> (_1)n_zbm+i .
izo \' iz \!
Furthermore if m = n, then we have
Corollary 2.

f: (Z’)bnﬂ- -0.

i=0
iZn mod 2
If C = X, then there is no new information about the Bernoulli numbers. But if C' = X2, then this is
equivalent to Kaneko’s recurrence formula.

2. g-recurrence formula

In this section we shall extend results in the previous section for the g-Bernoulli numbers attached to
formal group. Let ¢ be an indeterminate and let o be the formal power series ring in ¢ — 1 over some
Q-algebra. Furthermore let F(X,Y) be a 1-dimensional commutative formal group defined over o and
let f(X) be an isomorphism from the additive formal group X +Y to §(X,Y). We note that there exists
a unique isomorphism fz(X) from X +Y to §(X,Y) defined over o such that f3(0) = 1. And §(X) is
equal to fz(cX) for some invertible element ¢ € 0. Conversely for any ¢ € 0*, fz(cX) is an isomorphism
from X +Y to F(X,Y). Throughout this paper we assume that
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Assumption 2.
ordq_lf(gn)(O) >n—1 foraln>1.

We note that by this assumption §, (4, B) (see Definition 1 below) and f(a) are convergent in o for
any A, B € o[[X]] and a € 0 as formal power series (see [6, Remark 3]).

Definition 1. For each non-negative integer n, we denote the expansion of F(X,Y)™ by
Y= (”) Xiyd
ij>0 \0J/ 5
J>
and we set

n
s B =3 () oty
i,j>0 N/ 8
for any power series A= 3 aan—? and B=Y ann—T in o[[X]]. Then we define the xz-product by
n>0 n>0
Xn

nl

Axz B = Zgn(A,B)

n>0

We can prove (o[[X]], +, *z) is an o-algebra (see [6, Proposition 1]). Next we extend the following map:

X" " X xg x5 X
n times
o-linearly. Hence we can get a natural homomorphism from (o[[X]], +, ) to (o[[X]], +, *z). We call this
map g-operator and denote the image of A € o[[X]] under the g-operator by Az .. We define a g-analogue
of power series A attached to § and ¢ by Az .. The following proposition is essential for our theory of
g-analogue (see [6, Theorem 1 and Proposition 2]).

Proposition 2. For any a,b € 0, we have
(i) (e¥)g.c =X,
(ii) ef(@X sz ef (X — pfath)X
We define the ¢-Bernoulli numbers 3, (§, ¢) attached to § and ¢ as follows:

Definition 2. For each non-negative integer n, we define the n-th q-Bernoulli number 3, (§, ¢) attached

to F(X,Y) € o[[X,Y]] and c € 0* by the coefficient of Xn—T in Bz = (e;(——l)gc

We note that if § = X +Y + (¢ — 1) XY and ¢ = lgff, then f(X) = q:__ll and (3, (5, c) satisfies the
following recurrence formula:

n loff forn=1,
Bo(@.c) =1, (B, c) +1)" = Bu(,c) =1 ¢
0 forn>1,

where we use the usual convention about replacing 3(F, ¢)’ by 3;(3, ¢) for each non-negative integer i.



4 JUNYA SATOH

Proof. Apply the g-operator to BeX —B = X, then we have By c*z eX —Bz . = cX and §,(Bjz.c, eX) =
(¢B(F, ¢) + 1)™. Hence the above recurrence formula holds. O

Now we may get a g-analogue of Proposition 1 by applying the g-operator to Lemma 1, but it is
unknown the commutativity of the g-operator and the derivative on o[[X]]. So we need to take another
approach to get a g-analogue of Lemma 1.

Lemma 2. For any power series A, B and non-negative integer n, we have
(Axz B)™ = Z (n> AW sz BU) (1)
ijz0 \"/E

Proof. For any non-negative integer m, the coefficient of )fn—T in the left hand side of (1) is equal to

m+n
STI’H—"(Aa B) = Z ( .. > aibj .
ij=o N ) /%
On the other hand that in the right hand of (1) is equal to
n ; ; n m
Z ( > F(AD, BU)) = Z ( > Z (k; l> Qivkbji -
LA ij50 \0 I/ 5 50\t 5

Hence it is sufficient to show that

" 2 ) )

0<I<y
for all i > 0 and j > 0. Because of F(X,Y)™ ™ = F(X,Y)™F(X,Y)", we can get what we want. [J
Apply this lemma to A *z WX and VX then we have
Lemma 3.
A 45 SOX Z 3 (Z”> H1) (A x5 SOX)0D)
igzo0 \"71/§
This is a g-analogue of Lemma 1. If B satisfies Assumption 1, by applying the g-operator, we have
B *z /WX = By + Oy .

If C is a polynomial, then Cs . is also a polynomial and deg C' = deg C5 . (see [6, Lemma 2]). Hence we
have the following:

Proposition 3. If B satisfies Assumption 10 then we have

> (?”.)g(lmm - (.”.>§f<—1>j<ﬂm+z- )

1 7
ijzo \vJ ijzo \WJ

xn
E

for any non-negative integer m and n, where Bz . = > Ban—? and Czc= > T
n>0 n>0
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If m > deg C, then we have
Corollary 3.
m - n ;
> (z > (1) Buyi = Y (z > f(=1)! Bt -
750 )/ 5 750 )/ 5
Furthermore if m = n, then we have
Corollary 4.
n j j _
5 (1) 6 =1 =0
.. Za] 5
1,5 >0

Hence if C' = X, then we get a recurrence formula for 3, = 3,(F,c). On the other hand if C = X2,

then (3, is the coefficient of Xn—T in

X2
(eX — 1> = cX x5 By = cXds(Bg.e) ,
F,c

where dz = ) (1.11)3 ddTi,., (see [6, Lemma 1]). Furthermore if F(X,Y) = X +Y + (¢ — )XY and
i>0

c= g’ff , then %dg(%&c) is equal to the generating function of Carlitz’s ¢-Bernoulli numbers (see the

next section). This means that we get a Kaneko’s type of recurrence formula for Carlitz’s g-Bernoulli
numbers.

3. X +Y 4 (¢ - 1)XY

FFX,Y)=X4Y +(¢—1)XY and ¢ = g’ff, then we can state results in the previous section as
follows:

Corollary 5. If B satisfies Assumption 1, then we have
m ) n )
@) X ()" Buvi= 2 (1) (=) (Bmti + Ymri)
j i=0

=

-
Il
=]

(ii) Zo ("M By = '2‘6 (N (=) Brnys  if m>degC,
(i) > (g™ = (=1)""}Bnyi =0 ifm=mn>degC,
i=0
where By .= > Ban—? and Cz .= > 'yan—T
n>0 n>0

Proof. If §(X,Y) = X +Y + (¢ — 1)XY, then, by the definition of ()

m
4,3/ F

(m)g - (m> ( + f_ m> (g1 (2)

, we have
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Hence for any a € o, we have

2 (Z’)J(“m“ -2 (m> ( ri- m> (4= 1™ 1(a) B

4,520

Hence we can get what we want. [

in (effil)&c, then f3,(3,c)

Let 3,.(3, c) be the coefficient of Xn—T in 1dz(Bz.c), i.e. , that of *< i

n!
satisfies the following Carlitz’s recurrence formula ([1]):

Bo(S.c) =1, a(aB(F.c) +1)" = Bu(F.c) = {

1 form=1,
0 forn>1.

Hence 3, (3, c) is equal to the n-th Carlitz’s g-Bernoulli number. To prove this we need the following:
Lemma 4. If §(X,Y)=X+Y 4 (¢ — 1) XY, then dg is a homomorphism on (o[[X]], +, *5)-

Proof. In this case we can write
dz(A)=A+ (¢g— 1A
for any power series A € o[[X]]. Hence by Lemma 2 we have
dg(Axz B) = Axz B+ (¢—1)(Axz B)
=Ax3 B+ (¢q—1){A' x3 B+ Axz B’ + (¢ —1)A" x5 B'}
=(A+(@@-1DA) x5 (B+(q-1)B)
= dg(A) x5 dg(B)

for any A and B in o[[X]]. Hence dz is a homomorphism on (o[[X]], 4+, *5). O
Proof (Carlitz’s recurrence formula). Apply dz to Bz . *5 eX — Bz .= cX, then we have
d3(Bg,c) x5 g™ — dz(Bgz,c) = cX —logq .
Hence (3, (3, c) satisfies Carlitz’s recurrence formula. [J
Finally we give another proof of Corollary 5.
Lemma 5. If §(X,Y)=X+4+Y + (¢ — 1) XY, then the xz-product is written by
Axy X" = dz(A)X"

for any non-negative integer n.
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Proof. 1t is sufficient to prove for )f—, kg —,J (¢ > 0 and j > 0). By the definition of xz and (2), we have

()5

£ (1) v
G5 -E 0o

Hence we have what we want. []

Remark 1. f§=X+Y + (¢—1)XY and c = logq , then, by Lemma 5, we can get

Xt XJ

On the other hand

A(X) 5 '@ = A(q* X))l @

for any power series A € o[[X]] and a € 0. By this we can get Corollary 5 from Lemma 1 not using
Lemma 2.

Remark 2. Lemma 4 and Lemma 5 hold only for F(X,Y) =X +Y 4 (¢ — 1) XY (see [6, Lemma 1
and Proposition 4]).
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