
Parallel PC iteration of pseudo two-step RK
methods for nonstiff IVPs ∗

Nguyen Huu Cong † and Taketomo Mitsui ††
† Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science

334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
†† Graduate School of Human Informatics, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Abstract

A parallel PC iteration scheme for a general class of pseudo two-step Runge-Kutta
methods (PTRK methods) of arbitrarily high order is analyzed for solving first-order
nonstiff initial-value problems (IVPs) on parallel computers. Starting with an s-stage
pseudo two-step RK method of order p∗ with w implicit stages, we apply the highly
parallel PC iteration process in P(EC)mE mode. The resulting parallel-iterated pseudo
two-step RK method (PIPTRK method) uses an optimal number of processors equal
to w. By a number of numerical experiments, we show the superiority of the PIPTRK
methods proposed in this paper over both sequential and parallel methods available in
the literature.

Key words: RK methods, PC methods, parallelism.
AMS(MOS) subject classifications (1991): 65M12, 65M20
CR subject classifications: G.1.7

1 Introduction

The arrival of parallel computers influences the development of methods for the numerical
solution of a nonstiff initial value problem (IVP) for systems of first-order ordinary differential
equations (ODEs)

y′(t) = f (t, y(t)), y(t0) = y0, t0 ≤ t ≤ T, (1.1)

where y, f ∈ Rd. The most efficient numerical methods for solving this problem are the
explicit Runge-Kutta methods (RK methods). In the literature, sequential explicit RK
methods up to order 10 can be found in e.g., [15, 17, 18]. In order to exploit the facilities
of parallel computers, a number of parallel explicit methods have been investigated in e.g.,
[1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 19, 20, 21]. A common challenge in the latter mentioned
works is to reduce, for a given order of accuracy, the required number of effective sequential
f -evaluations per step, using parallel processors. In the present paper, we propose a class of

∗This work was supported by Scientist Exchange Program FY2001 of JSPS

1

parallel PC iteration methods based on a new class of pseudo two-step RK corrector methods
(PTRK corrector methods) recently proposed in [10]. A new s-stage PTRK corrector method
using w implicit stages, v = s − w explicit stages is of step point and stage order both at
least equal to s with any integer pair w, v, with w + v = s. It is always zero-stable and can
attain the step point order p∗ = s + 1, stage order q∗ = s (see Section 2). Applying a highly
parallel PC iteration scheme to PTRK methods gives us the methods which are analogous to
the parallel-iterated RK methods (PIRK methods) proposed in [20]. Therefore, the resulting
PC iteration methods will be termed parallel-iterated PTRK methods (PIPTRK methods)
(see Section 3).

Although, for a given number of processors, the order of the PIPTRK methods used for
the numerical experiments in this paper is equal to that of the PIRK methods, their rate
of convergence is better, their predictor formula is more accurate, so that their efficiency
is expected to be increased (see Section 4). The increased efficiency is demonstrated in
Sections 4.1 and 4.2, where numerical results are presented by comparing the PIPTRK
methods with PIRK and sequential explicit RK methods available in the literature.

In the following sections, for the sake of simplicity of notation, we assume that the
IVP (1.1) is a scalar problem. However, all considerations below can be straightforwardly
extended to a system of ODEs.

2 PTRK corrector methods

The PTRK corrector methods were firstly proposed in [10], following the similar approach
used in [11]. In this section, we give an overview on these methods. Let collocation vector
c be partitioned into two subvectors cv and cw that is c = (cT

v , cT
w)T , then a general s-stage

PTRK method based on c for a scalar equation is defined by

V n = unev + hAvvf(tn−1ev + hcv, V n−1) + hAvwf(tn−1ew + hcw, W n−1),
(2.1a)

W n = unew + hAwvf(tnev + hcv, V n) + hAwwf(tnew + hcw, W n), (2.1b)

un+1 = un + hbT
v f(tnev + hcv, V n) + hbT

wf(tnew + hcw, W n), (2.1c)

where, un+1 ≈ y(tn+1), Aij are i × j method-parameter matrices, bj, dj and cj are j-
dimensional method-parameter vectors, ej is the j-dimensional vector with unit entries (for
i, j = v, w, v + w = s). The v-dimensional vector V n is called the explicit stage subvec-
tor representing the numerical approximation to the exact solution vector y(tnev + cvh)
= [y(tn + c1h), . . . , y(tn + cvh)]T , while the w-dimensional vector W n stands for the im-
plicit stage subvector representing the numerical approximation to the exact solution vector
y(tnew + cwh) = [y(tn + cv+1h), . . . , y(tn + csh)]T . Furthermore, in (2.1) and elsewhere in
this paper, we employ for any two vectors ξ = (ξ1, . . . , ξs)

T , η = (η1, . . . , ηs)
T and any scalar

function f the notation f(ξ, η) := [f(ξ1, η1), . . . , f(ξs, ηs)]
T . Also we employ the notational

convenience that a power of any vector means the vector consisiting of the componentwise
powered one.

The method-parameter matrices Aij and vectors bj (for i, j = v, w, v + w = s) will be
determined by the order conditions (see Theorem 2.1). This PTRK method is conveniently

2

specified by the tableau

Avv Avw cv Ovv Ovw

Owv Oww cw Awv Aww

un+1 bT
v bT

w

(2.2)

In order to start the method (2.1), an appropriate starting procedure is needed for generating
sufficiently accurate starting stage vectors V 0, W 0 and step point value u1 from u0 = y0.
This can be done, for example, by using an appripriate PIRK method considered in [20] or
a sequential RK code with dense output.

The s-stage PTRK method (2.1) consists of v explicit stages and w implicit stages. Its
order can be studied in the same way as the order of RK methods. Thus suppose that
un = y(tn), V n−1 = y(tn−1ev + hcv) and W n−1 = y(tn−1ew + hcw), then we have the
following order definition (see [10]):

Definition 2.1 The PTRK method (2.1) is said to be of order p∗ if the equation

y(tn+1) − un+1 = O(hp∗+1)

holds. Furthermore, it is said to be of stage order q∗ = min{p∗, q1, q2} if, in addition to the
above, the equations

y(tnev + hcv) − V n =O(hq1+1),

y(tnew + hcw) − W n =O(hq2+1)

hold.

The following theorem gives the order conditions for PTRK methods (see[10, Theorem 2.1]).

Theorem 2.1 If the function f is Lipschitz continuous, and if the equations

(Avv, Avw)(c − e)j−1 =
cj

v

j
, j = 1, . . . , q1, (2.3a)

(Awv, Aww)cj−1 =
cj

w

j
, j = 1, . . . , q2, (2.3b)

(bT
v , bT

w)cj−1 =
1

j
, j = 1, . . . , p, (2.3c)

holds, then the PTRK method (2.1) has order p∗ = min{p, q1 + 1, q2 + 1} and stage order
q∗ = min{p∗, q1, q2} for any collocation vector c with distinct abscissae and for any integer
pair v, w with w + v = s.

In order to express the parameter matrices Avv, Avw, Awv, Aww and vectors bv, bw explicitly
in terms of the collocation vector c, we introduce the matrices and vectors

Pv :=
(cv

1
,
c2

v

2
,
c3

v

3
,
c4

v

4
. . . ,

cs
v

s

)
, Pw :=

(cw

1
,
c2

w

2
,
c3

w

3
,
c4

w

4
. . . ,

cs
w

s

)
,

R :=
(
e, c, c2, c3, . . . , cs−1

)
, g :=

(1

1
,
1

2
, . . . ,

1

s

)T

Q :=
(
e, (c − e), (c − e)2, . . . , (c − e)s−1

)
.

3

Then the order conditions (2.3) in Theorem 2.1 for q1 = q2 = p = s can be presented in the
form (cf. [10, (2.10)])

(Avv, Avw)Q = Pv, (Awv, Aww)R = Pw, (bT
v , bT

w)R = gT . (2.4)

From (2.4) the parameter matrices and vectors of the PTRK method (2.1) can be expressed
as follows

(Avv, Avw) = PvQ
−1, (Awv, Aww) = PwR−1, (bT

v , bT
w) = gTR−1. (2.5)

According to Theorem 2.1, (2.5) implies

y(tnev + hcv) − V n = O(hs+1),

y(tnew + hcw) − W n = O(hs+1),

y(tn + h) − un+1 = O(hp+1).

(2.6)

where p = s for any collocation vector c with distinct abscissae. Moreover, the vectors bv,
bw, defined in (2.5) which satisfy order conditions (2.3c), are the weights of the collocation
implicit RK method (IRK method) based on collocation vector c (see g.e., [18]). Therefore,
the order results for collocation IRK methods show that a special selection of the vector c
may enable us to increase the order p beyond s (superconvergence) through the orthogonality
relation (see also [18, p. 212]). The following theorem is a direct consequence of Theorem 2.1,
the explicit expressions (2.5) of parameters of the PTRK methods (2.1) and the application
of the orthogonality relation (see also [10]).

Theorem 2.2 An s-stage PTRK method defined by (2.1) is of step point order p∗ = s and
of stage order q∗ = s if the parameter matrices Avv, Avw, Awv, Aww and vectors bv, bw, of
the method satisfy the relations (2.5) for any collocation vector c with distinct abscissae and
for any integer pair v, w with w + v = s. It has step point order p∗ = s + 1 if, in addition,
the equation

Pj(1) = 0, Pj(x) :=

∫ x

0

ξj−1
s∏

i=1

(ξ − ci)dξ, j = 1, . . . , k,

holds for k ≥ 1.

Theorem 2.2 indicates that an s-stage PTRK method can attain the step point order p∗ =
s + 1. According to the analysis of the local errors in this section, the starting vectors V 0,
W 0 and the approximated value u1 should be of order s + 1 and p∗ + 1, respectively, that is

y(t0ev + hcv) − V 0 = O(hs+1),

y(t0ew + hcw) −W 0 = O(hs+1),

y(t1) − u1 = O(hp∗+1).

Since the PTRK method (2.1) is of the two-step nature, its property of zero-stability is an
important requirement. The following theorem gives the answer to this issue.

Theorem 2.3 The PTRKN methods based on any colocation vectors c with distinct abscis-
sae are always zero-stable for any integer pair v, w with v + w = s.

This theorem was proved in [10] by expressing the PTRK methods into a sinlge-step form
of the general linear method (GLM) (see e.g., [5]).

4

3 PIPTRK methods

In this section, we apply a parallel PC iteration scheme to the PTRK methods. Using (2.1)
as the corrector method with the predictor formula

W (0)
n = ynew + hBwvf(tn−1ev + hcv, V n−1)

+ hBwwf(tn−1ew + hcw, W
(m)
n−1), (3.1a)

where the matrices Bvw and Bww are determined by the order conditions given below (Sec-
tion 3.1), we arrive at the following PC iteration scheme (in P(EC)kE mode with k = m or
k = m + 1):

V n = ynev + hAvvf(tn−1ev + hcv, V n−1)

+ hAvwf(tn−1ew + hcw, W
(m)
n−1), (3.1b)

W (j)
n = ynew + hAwvf(tnev + hcv, V n)

+ hAwwf(tnew + hcw, W (j−1)
n), j = 1, . . . , m, (3.1c)

yn+1 = yn + hbT
v f(tnev + hcv, V n) + hbT

wf(tnew + hcw, W (m)
n). (3.1d)

We note that un, un+1 are the numerical approximations obtained by PTRK method (2.1)
and yn, yn+1 are those obtained by PIPTRK method (3.1). As for every explicit method,
the computational cost of the method (3.1) is measured by the number of sequential f -
evaluations per step. Notice that v components of f(tnev + hcv, V n) and w components
of f(tnew + hcw, W (j−1)

n), j = 1, . . . , m + 1, can be computed in parallel, provided that
max(v, w) processors are available. Since f(tn−1ev+hcv, V n−1) and f(tnew+hcw, W n−1) can
be reused, in general, we need m+2 sequential f -evaluations per step. However, by a special
choice of collocation vector c, one sequential f -evaluation of components of f(tnev +hcv, V n)
can be saved and only w processors are needed (see Section 4). We shall call the iteration
scheme defined by (3.1), a parallel-iterated PTRK method (PIPTRK method).

3.1 Order conditions for the predictor

The conditions for the predictor formula (3.1a) being of order s can be derived by replacing
V n−1, yn, W n−1 and W (0)

n by the exact solution values y(tn−1ev + hcv) = y(tnev + h(cv −
ev)), y(tn−1ew + hcw) = y(tnew + h(cw − ew)), y(tn) and y(tnew + hcw), respectively. On
substitution of these exact solution values into (3.1a), we are led to

y(tnew + hcw) − y(tn)ew − hBwvy
′(tnev + h(cv − ev)) (3.2)

− hBwwy′(tnew + h(cw − ew)) = O(hs+1).

Using the Taylor expansion for a sufficiently smooth function y(t) in the neighbourhood of
tn, we can expand the left-hand side of (3.2) in powers of h and obtain the order conditions
(cf., e.g., [8, 10])

cj
w − j[Bwv(cv − ev)

j−1 + Bww(cw − ew)j−1] = 0, j = 1, . . . , s, (3.3a)

5

or equivalently

(Bwv, Bww)(c − e)j−1 =
cj

w

j
, j = 1, . . . , s. (3.3b)

The conditions (3.3) determine the matrix (Bwv, Bww). With the matrices Pw and Q defined
in Section 2, these conditions (3.3) can be written in the form

(Bwv, Bww)Q − Pw = O, (3.4)

which leads to the explicit expression of the matrix (Bwv, Bww),

(Bwv, Bww) = PwQ−1. (3.5)

If (3.4) is satisfied, then we have

W n − W (0)
n = [W n − y(tnew + hcw)] + [y(tnew + hcw) −W (0)

n] = O(hs+1).
(3.6)

Since the function f is Lipschitz continuous and each iteration in (3.1) raises the order of
the iteration error by 1, the following order relations are obtained:

W n −W (m)
n = O(hm+s+1),

un+1 − yn+1 = hbT
w[f(W n) − f(W (m)

n)] = O(hm+s+2),

y(tn+1) − yn+1 = [y(tn+1) − un+1] + [un+1 − yn+1] = O(hp∗+1) + O(hm+s+2),

where, p∗ is the order of the PTRK corrector method (2.1). Thus, we have the following
theorem:

Theorem 3.1 If the PTRK method (2.1) has step point order p∗, and if the conditions (3.3)
(equivalently (3.4) or (3.5)) are satisfied, then the PIPTRK method (3.1) has step point order
p∗∗ = min{p∗, m + s + 1}, for any collocation vector c with distinct abscissae.

3.2 Rate of convergence

The rate of convergence of the PIPTRK method (3.1) is defined by using the model test
equation y′(t) = λy(t), where λ runs through the eigenvalues of the Jacobian matrix ∂f/∂y
(cf., e.g., [7, 12, 14, 19]). Applying the method (3.1) to this model test equation, we obtain
the iteration error equation

W (j)
n − W n = zAww

[
W(j−1)

n − W n

]
, z := hλ, j = 1, . . . , m. (3.7)

Hence, in view of the model test equation, the rate of convergence is determined by the
spectral radius ρ(zAww) of the iteration matrix zAww. Requiring that ρ(zAww) < 1, leads us
to the convergence condition

|z| <
1

ρ(Aww)
or h <

1

ρ(∂f/∂y)ρ(Aww)
. (3.8)

6

We shall call ρ(Aww) the convergence factor and 1/ρ(Aww) the convergence boundary of the
PIPTRK method. The freedom in the choice of the collocation vector c of PTRK correctors
can be used for minimizing the convergence factor ρ(Aww), or equivalently, for maximizing
the convergence region Sconv defined by

Sconv :=
{
z : |z| < 1/ρ(Aww)

}
. (3.9)

Specification of convergence factors for a specified class of PIPTRK methods used in our
numerical experiments is reported in Section 4.

3.3 Stability regions

The linear stability of the PIPTRK methods (3.1) is investigated by again using the model
test equation y′(t) = λy(t), where λ ∈ C− := {z : z ∈ C, �(z) ≤ 0}. Denoting z := λh
and applying (3.1) to the model test equation yields

V n = zAvvV n−1 + zAvwW
(m)
n−1 + evyn, (3.10a)

W (m)
n = [I + zAww + · · · + (zAww)m−1](ewyn + zAwvV n) + (zAww)mW (0)

n

= [I + zAww + · · · + (zAww)m−1](ewyn + zAwvV n)

+ (zAww)m(ewyn + zBwvV n−1 + zBwwW
(m)
n−1)

= [I + zAww + · · · + (zAww)m−1][ewyn + zAwv(evyn + zAvvV n−1 + zAvwW
(m)
n−1)]

+ (zAww)m(ewyn + zBwvV n−1 + zBwwW
(m)
n−1)

=
{
z2[I + zAww + · · · + (zAww)m−1]AwvAvv + zm+1(Aww)mBwv

}
V n−1

+
{
z2[I + zAww + · · · + (zAww)m−1]AwvAvw + zm+1(Aww)mBww

}
W

(m)
n−1

+
{
[I + zAww + · · · + (zAww)m−1](ew + zAwvev) + zm(Aww)mew

}
yn

= M
(m)
21 (z)V n−1 + M

(m)
22 (z)W

(m)
n−1 + M

(m)
23 (z)yn, (3.10b)

yn+1 = yn + zbT
v V n + zbT

wW (m)
n

= yn + zbT
v (zAvvV n−1 + zAvwW

(m)
n−1 + evyn

+ zbT
w(M

(m)
21 (z)V n−1 + M

(m)
22 (z)W

(m)
n−1 + M

(m)
23 (z)yn)

=
{
z2bT

v Avv + zbT
wM

(m)
21 (z)

}
V n−1 +

{
z2bT

v Avw + zbT
wM

(m)
22 (z)

}
W

(m)
n−1

+
{
1 + zbT

v ev + zbT
wM

(m)
23 (z)

}
yn

= M
(m)
31 (z)V n−1 + M

(m)
32 (z)W

(m)
n−1 + M

(m)
33 (z)yn. (3.10c)

From (3.10) we are led to the recursion


 V n

W (m)
n

yn+1


 = Mm(z)


 V n−1

W
(m)
n−1

yn


 , (3.11a)

7

where Mm(z) is the (s + 1) × (s + 1) matrix defined by

Mm(z) =




zAvv zAvw ev

M
(m)
21 (z) M

(m)
22 (z) M

(m)
23 (z)

M
(m)
31 (z) M

(m)
32 (z) M

(m)
33 (z)


 (3.11b)

The explicit formulas of M
(m)
ij (z) with i = 2, 3, j = 1, 2, 3 in (3.11b) are clear from (3.10).

The matrix Mm(z) in (3.11) which determines the stability of the PIPTRK methods, will be
called the amplification matrix, whereas its spectral radius ρ

(
Mm(z)

)
the stability function.

For a given number of iterations m, the stability region of the PIPTRK methods are defined
as

Sstab(m) :=
{
z : ρ

(
Mm(z)

)
< 1, �(z) ≤ 0

}
.

The real and imaginary boundaries for a given m, βre(m) and βim(m), respectively, can be
defined in the familiar way. The stability pairs

(
βre(m), βim(m)

)
for the PIPTRK methods

used in our numerical experiments can be found in Section 4.

4 Numerical experiments

In this paper, we report numerical results for PIPTRK methods with w = s/2 and v = s/2,
where s = 4, 6, 8, 10 (see Section 3). The PTRK corrector methods defined by (2.1) are
based on collocation vectors c defined by

cv = (c1, . . . , ck)
T , cw = (1 + c1, . . . , 1 + ck)

T , k = 2, 3, 4, 5, (4.1)

where c1, . . . , ck are k components of the k-dimensional Gauss-Legendre collocation vector.
This choice of c gives the PTRK correctors step point order p∗ = s and stage order q∗ = s
(see Theorem 2.2), so that the corresponding PIPTRK methods defined by (3.1) have step
point order p∗∗ = s for any m (see Theorem 3.1). Also by this choice, v components of
f(tnev + hcv, V n) can be copied from the preceding step. Therefore the resulting PIPTRK
methods require m + 1 sequential f -evaluations per step and can be implemented on w =
p∗∗/2 processors. We do not claim that the above chosen collocation vectors are the best
possible. A further study of this topic will be subject of future research. These orders and
number of processors are the same as used for the PIRK methods proposed in [20]. However,
a direct numerical computation reveals that the convergence factors of PIPTRK methods
as defined in Section 3.2 are smaller than those of PIRK methods of the same order (see
Table 1). Table 2 lists the satbility boundaries of the PIPTRK methods. As shown in this
table, the stability pairs of these PIPTRK methods are sufficiently large for nonstiff problems.
Especially, all methods have a non-empty intersection of Sstab(m) with the imaginary axis.
We shall compare the PIPTRK methods with parallel and sequential explicit RK methods
from the literature. In the numerical experiments, for the first step, the starting velues V 0,
W 0 and y1 of a PIPTRK method will be generated by the associated PIRK method based
on the same collocation vector c as the underlying PIPTRK method. The absolute error
obtained at the end point of the integration interval is presented in the form 10−NCD (NCD

8

Table 1: Convergence factors for various parallel pth-order methods

Parallel pth-order methods p = 4 p = 6 p = 8 p = 10

PIRK (cf. [7]) 0.289 0.215 0.165 0.137
PIPTRK 0.194 0.136 0.106 0.086

Table 2: Stability pairs (βre(m), βim(m)) for various PIPTRK methods

Parallel
pth-order methods p = 4 p = 6 p = 8 p = 10

m = 1 (0.937, 0.818) (0.474, 0.115) (0.240, 0.234) (0.092, 0.092)
m = 2 (1.206, 1.377) (0.944, 0.123) (0.551, 0.562) (0.278, 0.266)
m = 3 (1.796, 1.700) (1.342, 0.124) (0.911, 0.588) (0.484, 0.509)
m = 4 (2.035, 2.100) (1.796, 0.124) (1.190, 0.810) (0.871, 0.890)
m = 5 (2.476, 2.173) (2.245, 0.124) (1.701, 1.215) (0.863, 0.856)
m = 6 (2.782, 2.662) (2.641, 0.124) (1.711, 1.645) (0.933, 0.917)

may be interpreted as the number of correct decimal digits). The computational efforts
are measured by the values of Nseq denoting the total number of sequential f-evaluations
required over the total number of integration steps Nstp.

Ignoring load balancing factors and communication times between processors in parallel
methods, the comparison of various methods in this section is based on Nseq and the obtained
NCDs. The numerical experiments with small widely-used test problems taken from the
literature below show a potential superiority of the new PIPTRK methods over the extant
methods. This superiority will be significant in a parallel machine if the test problems are
large enough and/or the f -evaluations are expensive (cf. e.g., [3]). All the computations
were carried out on a 29-digit precision computer. An actual implementation with stepsize
strategy for large and expensive problems on a parallel machine is a subject of further studies.

4.1 Comparison with parallel PC methods

In order to see the efficiency of various parellel PC methods, we follow a dynamical strategy
in all PC methods for determining the number of iterations in the successive steps. It seems
natural to require that the iteration error is of the same order in h as the local error of the
corrector. This leads us to the stopping criterion (cf. e.g., [7, 12])

‖W (m)
n − W (m−1)

n ‖∞ ≤ TOL = Chp∗ , (4.2)

where C is a problem- and method-dependent parameter, and p∗ is order of the PTRK
corrector. We shall report numerical results obtained by ones of the best parallel explicit
RK methods available in the literature, that is the PIRK methods proposed in [20] and the

9

methods constructed in this paper. We selected a test set of three problems taken from the
literature.

4.1.1 Two body problem

As a first numerical test, we apply the various pth-order PC methods to the two body problem
on the integration interval [0, 20], with eccentricity ε = 3

10
(cf., e.g., [20, 22])

y′
1(t) = y3(t), y1(0) = 1 − ε,

y′
2(t) = y4(t), y2(0) = 0,

y′
3(t) =

−y4(t)

[y2
1(t) + y2

2(t)]
3/2

, y3(0) = 0, (4.3)

y′
4(t) =

−y2(t)

[y2
1(t) + y2

2(t)]
3/2

, y4(0) =

√
1 + ε

1 − ε
.

The numerical results listed in Table 3 clearly show that the PIPTRK methods are much
more efficient than the PIRK methods of the same order. For this problem, all the PIPTRK
methods need only about two iterations per step.

Table 3: Values of NCD/Nseq for problem (4.3) obtained by various pth-order parallel PC
methods

PC methods p Nstp = 100 Nstp = 200 Nstp = 400 Nstp = 800 Nstp = 1600 C

PIRK 4 3.1/441 3.7/905 4.9/1947 6.1/4000 7.3/8000 100

PIPTRK 4 3.7/230 4.2/431 5.2/812 6.3/1604 7.5/3204 100

PIRK 6 5.0/643 7.2/1302 8.9/2637 10.5/5499 12.3/11200 10−1

PIPTRK 6 5.3/285 7.1/526 8.9/972 10.7/1903 12.5/3661 10−1

PIRK 8 7.6/837 10.4/1686 12.8/3397 15.0/6845 17.3/13827 10−2

PIPTRK 8 7.8/353 10.2/649 12.7/1156 15.1/2193 17.5/4035 10−2

PIRK 10 9.3/926 12.8/1926 16.3/3927 19.2/8226 22.2/16532 10−2

PIPTRK 10 10.6/382 13.3/656 16.4/1198 19.5/2245 22.5/4260 10−2

4.1.2 Fehlberg problem

For the second numerical test, we apply the various pth-order PC methods to the often-used
Fehlberg problem on the integration interval [0, 5] (cf. e.g., [7, 20, 22])

y′
1(t) = 2ty1(t)log

(
max{y2(t), 10

−3}) y1(0) = 1,

y′
2(t) = −2ty2(t)log

(
max{y1(t), 10

−3}) y2(0) = e,
(4.4)

with the exact solution y1(t) = exp
(
sin(t2)

)
, y2(t) = exp

(
cos(t2)

)
. The numerical results are

reported in Table 4. These numerical results show that the PIPTRK methods are again far
superior to the PIRK methods of the same order.

10

Table 4: Values of NCD/Nseq for problem (4.4) obtained by various pth-order parallel PC
methods

PC methods p Nstp = 100 Nstp = 200 Nstp = 400 Nstp = 800 Nstp = 1600 C

PIRK 4 2.7/392 4.0/842 5.2/1756 6.5/3650 7.7/7409 103

PIPTRK 4 2.9/227 4.3/432 5.8/829 7.2/1612 8.4/3201 103

PIRK 6 5.2/601 7.0/1245 8.9/2542 10.7/5199 12.5/10488 103

PIPTRK 6 6.0/302 8.4/563 10.3/1039 12.2/1946 14.0/3764 103

PIRK 8 7.8/774 10.2/1603 12.6/3297 15.1/6674 17.5/13468 103

PIPTRK 8 8.6/376 10.8/673 13.3/1217 15.8/2296 18.3/4385 103

PIRK 10 9.9/942 12.9/1947 15.9/3973 18.9/8134 22.0/16407 103

PIPTRK 10 11.0/454 14.2/791 17.2/1443 20.2/2663 23.2/4877 103

4.1.3 Jacobian elliptic functions problem

The final numerical example is the Jacobian elliptic functions sn, cn, dn problem for the
equation of motion of a rigid body without external forces on theintegration interval [0, 20]
(cf., e.g., [18, problem JACB, p. 240], also [22])

y′
1(t) = y2(t)y3(t), y1(0) = 0,

y′
2(t) = −y1(t)y3(t), y2(0) = 1, (4.5)

y′
3(t) = −0.51y1(t)y2(t), y3(0) = 1.

The exact solution is given by the Jacobi elliptic functions y1(t) = sn(t : k), y2(t) = cn(t; k),
y3(t) = dn(t; k) (see [16]). The numerical results for this problem are given in Table 5 and
give rise to nearly the same conclusions as formulated in the two previous examples.

Table 5: Values of NCD/Nseq for problem (4.5) obtained by various pth-order parallel PC
methods

PC methods p Nstp = 100 Nstp = 200 Nstp = 400 Nstp = 800 Nstp = 1600 C

PIRK 4 2.3/300 5.1/800 6.3/1600 7.5/3200 8.9/6571 101

PIPTRK 4 4.5/202 6.7/403 7.7/803 8.8/1603 10.0/3203 101

PIRK 6 5.1/486 7.8/1126 11.2/2345 12.5/4775 14.3/9600 100

PIPTRK 6 7.9/205 10.0/405 11.8/805 13.6/1605 15.4/3205 100

PIRK 8 8.2/678 11.1/1470 14.0/3028 16.7/6195 19.1/12540 10−1

PIPTRK 8 9.8/243 12.7/433 16.1/807 18.5/1607 20.9/3207 10−1

PIRK 10 10.1/765 13.4/1655 16.8/3479 19.6/7095 23.2/14968 10−1

PIPTRK 10 12.0/265 15.5/474 20.1/809 23.8/1609 26.4/3209 10−1

11

4.2 Comparison with sequential methods

In Section 4.1, the PIPTRK methods were compared with PIRK methods. In this section, we
shall compare these PIPTRK methods with some of the best sequential explicit RK methods
currently available.

In order to compare the methods of comparable order, we restricted the numerical ex-
periments to the comparison of our 8th order PIPTRK method denoted by PIPTRK8 with
two sequential codes DOPRI5 and DOP853 for the Fehlberg problem (4.4). These DOPRI5 and
DOP853codes are embedded explicit RK methods due to Dormand and Prince andcoded by
Hairer and Waner (see [18]). They are based on pair 5(4) and “triple” 8(5)(3), respectively.
DOP853 is the new version of DOPRI8 with a “stretched” error estimator (see [18, p. 254]).
These two codes belong to the most efficient currently existing sequential codes for nonstiff
first-order ODE problems. We took the best results obtained by DOPRI5 and DOP853 given in
[9] and added the results in the low accuracy range obtained by PIPTRK8 method. In spite
of the fact that the results of the sequential codes are obtained using a stepsize strategy,
whereas PIPTRK8 method is applied with fixed stepsizes, it is the PIPTRK8 method that
is the most efficient (see Table 6).

Table 6: Comparison with sequential methods for problem (4.4)

Methods Nstp NCD Nseq

DOPRI5 (from [18]) 75 3.2 452
162 5.3 974
393 7.4 2360
979 9.4 5876

2458 11.4 14750

DOP853 (from [18]) 47 4.5 552
70 6.2 825

107 8.0 1265
164 10.2 1950
261 12.2 3123

PIPTRK8 (in this paper) 25 3.3 147
50 5.8 220

100 8.6 376
200 10.8 673
400 13.3 1217

5 Concluding remarks

In this paper, we proposed a new class of paralle PC iteration methods called parallel-iterated
pseudo two-step RK methods (PIPTRK methods) based on pseudo two-step RK correctors

12

(PTRK correctors). Three numerical experiments showed that the PIPTRK methods are
much superior to the known parallel and sequential methods available in the literature. In
the forthcoming papers, we will pursue the study of PIPTRK methods which involves with
the optimal choice of the method parameters and variable stepsize control.

References

[1] K. Burrage, Efficient block predictor-corrector methods with a small number of corrections, J.
Comput. Appl. Math. 45 (1993), 139-150.

[2] K. Burrage, Parallel methods for initial value problems, Appl. Numer. Math. 11 (1993), 5-25.

[3] K. Burrage, Parallel and Sequential Methods for Ordinary DifferentialEquations, Clarendon
Press, Oxford, 1995.

[4] K. Burrage and H. Suhartanto, Parallel iterated methods based on multistep Runge-Kutta
mehods of Radau type, Advances in Computational Mathematics 7 (1997), 37-57.

[5] J.C. Butcher, The Numerial Analysys of Ordinary Differential Equations, Runge-Kutta and
General Linear Methods, Wiley, New York, 1987.

[6] M.T. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci.
Statist. Comput. 3 (1987), 342-353.

[7] N.H. Cong, Parallel iteration of symmetric Runge-Kutta for nonstiff initial-value problems, J.
Comput. Appl. Math. 51 (1994), 117-125.

[8] N.H. Cong, Explicit pseudo two-step Runge-Kutta methods for parallel computers, Intern. J.
Comput. Math. 73 (1999), 77-91.

[9] N.H. Cong, Continuous variable stepsize explicit pseudo two-step RK methods, J. Comput.
Appl. Math. 101 (1999), 105-116.

[10] N.H. Cong, A general family of pseudo two-step Runge-Kutta methods, SEA Bull. Math. 25
(2001), 61-73.

[11] N.H. Cong and T. Mitsui, Collocation-based two-step Runge-Kutta methods, Japan J. Indust.
Appl. Math. 13 (1996), 171-183.

[12] N.H. Cong and T. Mitsui, A class of explicit parallel two-step Runge-Kutta methods, Japan J.
Indust. Appl. Math. 14 (1997), 303-313.

[13] N.H. Cong, H. Podhaisky and R. Weiner, Numerical experiments with some explicit pseudo
two-step RK methods on a shared memory computer, Comput. Math. Appl. 36 (1998), 107-116.

[14] N.H. Cong and H.T. Vi, An improvement for explicit parallel Runge-Kutta methods, Vietnam
J. Math. 23 (1995), 241-252.

[15] A.R. Curtis, High-order explicit Runge-Kutta formulae, their uses and limitations, J. Inst.
Math. Appl. 16 (1975), 35-55.

13

[16] A.R. Curtis, Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions
of the Quarter Period, H.M.S.O., London, 1964.

[17] E. Hairer, A Runge-Kutta method of order 10, J. Inst. Math. Appl. 21 (1978), 47-59.

[18] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, I. Nonstiff
Problems, 2nd edition, Springer-Verlag, Berlin, 1993.

[19] P.J. van der Houwen and N.H. Cong, Parallel block predictor-corrector methods of Runge-Kutta
type, Appl. Numer. Math. 13 (1993), 109-123.

[20] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods
with stepsize control, J. Comput. Appl. Math. 29 (1990), 111-127.

[21] P.J. van der Houwen and B.P. Sommeijer, Block Runge-Kutta methods on parallel computers,
Z. Angew. Math. Mech. 68 (1992), 3-10.

[22] T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for
ordinary differential equations, SIAM J. Numer. Anal. 9 (1972), 603-637.

[23] S.P. Nørsett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in Numerical Meth-
ods for Ordinary Differential Equations, Proceedings L’Aquilla 1987, Lecture Notes in Mathe-
matics, 1386, (Edited by A. Bellen, C.W. Gear and E. Russo), Springer-Verlag, Berlin, 1989.

14

