
ENDEXTENSIONS IN BOUNDED ARITHMETIC

AND COMPUTATIONAL COMPLEXITY

Masahiro Yasumoto

Graduate School of Human Informatics
Nagoya University

��������� Let N be an elementary extension of � and n ∈ N−� . We prove that PTC(n)

has no proper endextension of ∆b
1-LLIND and consider conditions that a model of bounded

arithmetic has a proper end extension.

Let N be an elementary extension of the set of natural numbers N and M be a

substructure of N which is a model of PA−, then M has a proper endextension of PA−.

If M satisfies PA, then it is well known that M also has a proper endextension of PA. In

this paper, we consider conditions that a model M of a theory T in bounded arithmetic

has a proper endextension of some subtheory of T .
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1. Polynomial time closure

Let n be a nonstandard element i.e. n ∈ N − N. PTC(n) denotes the polynomial time

closure of {n} in N , then PTC(n) is a model of T 0
2 . If P = NP, then PTC(n) is a model

of S2. In this section, we prove

Theorem 1. PTC(n) has no proper endextension which satisfies ∆b
1 − LLIND.

Let T (e, x;α) be an oracle Turing machine satisfying the condition that for any

oracle Turing machine T ′(x;α) there are infinitely many natural numbers e such that

T (e, x;α) = T ′(x;α).

Let T (e, x;α)(t) denote the content of the output tape of the machine T at the time

t of the computation with an input x. Then y = T (e, x;α)(|z|) can be written as a

∆b
1(α)-formula which we write by

y = {e}(x, |z|;α).

The polynomial time closure PTC(n) of {n} is the set

{{e}(n, |n||e|; ∅)| e ∈ N}.

Assume that PTC(n) has a proper endextension L of ∆b
1 − LLIND. Let m ∈

L − PTC(n). Since L is an endextension of PTC(n), for all e ∈ N we have m > 2|n|
e ∈
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PTC(n). Now we consider the following infinite set

α = {x ∈ PTC(n) |x < |n|}.

Since L is an endextension of PTC(n), α is defined in L by a ∆b
1-formula with the

parameters n and m, i.e.

α ={x ∈ L |L |= x < |n| ∧ x = {e}(n, |n||e|; ∅) for some e ∈ N }

={x ∈ L |L |= x < |n| ∧ ∃e < ||m||(x = {e}(n, |n||e|; ∅) ∧ ∀y < e(x �= {y}(n, |n||y|; ∅)))}.

Then N is defined in L by a ∆b
1-formula with parameters n and m,

N = {e ∈ L |L |= e < ||m||∧∃x < |n|(x = {e}(n, |n||e|; ∅)∧∀y < e(x �= {y}(n, |n||y|; ∅)))}

Let Φ(e,m, n) be the defining ∆b
1-formula of N in L, then LLIND(Φ(x,m, n)) does not

hold in L.
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2. Endextensions

In this section, we try to construct an endextension L of PTC(n) which contains 2n.

Since ∃x(x = 2n) holds in L but not in PTC(n), L cannot be an elementary extension of

PTC(n). So many tools in model theory, omitting type arguments, internal ultrapower

etc. which give endextensions are of no use. Let M = {x ∈ N |x < y for some y ∈

PTC(n)}. Then M is closed under the smash function, hence M is a model of S2.

First we define L to be the set of all bounded subsets of PTC(n) defined by Σb-

formulas, in other words, α ∈ L if and only if there exists a Σb-formula Φ(x, y) and

a ∈ PTC(n) such that

α = {x ∈ PTC(n) |PTC(n) |= Φ(x, a) ∧ x < a}.

For such α,Φ(x, y) and a ∈ PTC(n), let

αM = {x ∈ M |M |= Φ(x, a) ∧ x < a}.

If P = NP, then PTC(n) is a Σb-elementary substructure of M , hence α = αM ∩

PTC(n). Since αM is definable in N , there exists a cα ∈ N such that

αM = {x ∈ N | bit(cα, x) = 1}.

By identifying α ∈ L with cα, we can consider L ⊂ N . Let α = {n } ∈ L, then cα = 2n,

so L contains 2n.
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Lemma 1. If P = NP, then L is an endextension of PTC(n).

Proof. Let cα ∈ L. Then there is a Σb-formula Φ(x, y) and a a ∈ PTC(n) ⊂ M such

that α = {x ∈ PTC(n) |PTC(n) |= Φ(x, a) ∧ x < a}. Let b ∈ PTC(n) be such that

cα < b, then we have

α = {x ∈ PTC(n) |PTC(n) |= Φ(x, a) ∧ x < |b|}.

Since we are assuming P = NP, PTC(n) is a model of S2, hence cα ∈ PTC(n).

Lemma 2. If P = NP, then α ∈ L implies 	 1
2α
 ∈ L.

Proof. Let Φ(x, y) and a ∈ PTC(n) define α, i.e.

α = {x ∈ PTC(n) |PTC(n) |= Φ(x, a) ∧ x < a},

then

	1
2
α
 = {x ∈ PTC(n) |PTC(n) |= Φ(x + 1, a) ∧ x < a − 1}.

Lemma 3. If P = NP, then α, β ∈ L implies α�β ∈ L.

Proof. Let Φ(x, y) and a ∈ PTC(n) (resp. Ψ(x, y) and b ∈ PTC(n)) define α (resp. β),
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then

α�β = {x ∈ PTC(n) |PTC(n) |= x = max(α) + max(β)}

= {x ∈ PTC(n) |PTC(n) |= ∃y < a∃z < b(x = y + z ∧ Φ(y) ∧ Ψ(z)

∧∀v < a(y < v → ¬Φ(v)) ∧ ∀w < b(z < w → ¬Ψ(w)) ∧ x < a + b}.

Lemma 4. If P = NP, then α, β ∈ L implies α + β ∈ L.

Proof. Let Φ(x, y),Ψ(x, y) and a, b ∈ PTC(n) be as in the proof of Lemma 3. Then

α + β is defined by the following bounded formula and max(a, b) + 1.

((Φ(x, y)�Ψ(x, y)) ∧ ∃i < x(¬Φ(i, y) ∧ ¬Ψ(i, y) ∧ ∀j < x(i < j → (Φ(j, y)�Ψ(j, y)))))

∨(¬(Φ(x, y)�Ψ(x, y)) ∧ ∃i < x(Φ(i, y) ∧ Ψ(i, y) ∧ ∀j < x(i < j → (Φ(j, y)�Ψ(j, y)))))

where Φ�Ψ denotes (Φ ∧ ¬Ψ) ∨ (¬Φ ∧ Ψ).

Next we consider multiplication on L. To prove that L is closed under multiplication,

we need more assumption than P = NP.

Lemma 5. Assume that P = PSPACE, then α, β ∈ L implies α · β ∈ L.

Proof. α ·β is computable by a PSPACE machine with oracles α and β, more precisely,

there exists an oracle PSPACE-machine S(x;α, β) such that

x ∈ α · β if and only if S(x;α, β).
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Since α, β ∈ L and P = PSPACE, S(x, α, β) is poly-time computable, hence α · β ∈ L.

Lemma 6. Assume that P = PSPACE, then L is a model of Σb
0 − LIND.

Proof. Let Φ(x) be a Σb
0-formura, then there is a Σ1,b

0 formula φ(x) such that

L |= Φ(x) if and only if PTC(n) |= φ(x).

Assume that PTC(n) |= φ(0) ∧ ¬φ(t) for some t ∈ PTC(n). Since we are assuming

P = PSPACE, we can find x ∈ PTC(n) by a PSPACE-machine such that PTC(n) |=

φ(x) ∧ ¬φ(x + 1), as contended.

Conjecture. Assume that P = PSPACE, then L is a model of ∆b
1 − LLIND.

If we prove the Conjecture, then by Theorem 1, we can conclude P �= PSPACE.
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in Logic 6 (1996), pp. 120-138.

3. G.Takeuti and M.Yasuoto, Forcing on Bounded Arithmetic II, Journal of Symbolic Logic 63 (1998),
pp. 860-868.

	���
��� 
�������

�������� ��
��� �� ����� �����������

������ ����������

�
����� ��!

������! "#" $#%&!

'�(��

E-mail address: yasumoto@info.human.nagoya-u.ac.jp


