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ABSTRACT. Let N be an elementary extension of N and n € N —N. We prove that PT'C(n)
has no proper endextension of AI{—LLIND and consider conditions that a model of bounded
arithmetic has a proper end extension.

Let N be an elementary extension of the set of natural numbers N and M be a
substructure of N which is a model of PA™, then M has a proper endextension of PA™.
If M satisfies PA, then it is well known that M also has a proper endextension of PA. In
this paper, we consider conditions that a model M of a theory T in bounded arithmetic

has a proper endextension of some subtheory of T'.
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1. Polynomial time closure

Let n be a nonstandard element i.e. n € N —N. PTC(n) denotes the polynomial time
closure of {n} in N, then PTC(n) is a model of T39. If P = NP, then PT'C(n) is a model

of S5. In this section, we prove

Theorem 1. PTC(n) has no proper endextension which satisfies AY — LLIND.

Let T'(e,z; ) be an oracle Turing machine satisfying the condition that for any

oracle Turing machine T”(x; «) there are infinitely many natural numbers e such that

T(e,x;a) =T (z; ).

Let T'(e,x;a)(t) denote the content of the output tape of the machine T' at the time
t of the computation with an input z. Then y = T(e,z;)(|z|) can be written as a

A% (a)-formula which we write by

y = {e}(z, [z} ).

The polynomial time closure PT'C'(n) of {n} is the set

{{e}(n,[n|'*};0)] e € N}

Assume that PTC(n) has a proper endextension L of A — LLIND. Let m €

L — PTC(n). Since L is an endextension of PT'C(n), for all e € N we have m > 2/"° ¢
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PTC(n). Now we consider the following infinite set

a={x e PTC(n) |z < |n|}.

Since L is an endextension of PTC(n), « is defined in L by a Ab-formula with the

parameters n and m, i.e.

a={zeL|LEz<|n|Az=/{e}(n,|n|';0d) for some e € N}

={z e L|LEz<[n|AJe<|m||(z={e}(n[n]:0) AVy < e(z # {y}(n. [n]V;0)))}.

Then N is defined in L by a A%-formula with parameters n and m,

N={eeL|LEe<|m|A3z<|n|(z={e}(n[n]:0)AVy < e(x # {y}(n,|n]";0)))}

Let ®(e,m,n) be the defining A%-formula of N in L, then LLIN D(®(z,m,n)) does not

hold in L.
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2. Endextensions

In this section, we try to construct an endextension L of PT'C'(n) which contains 2".
Since Jz(xz = 2™) holds in L but not in PT'C'(n), L cannot be an elementary extension of
PTC(n). So many tools in model theory, omitting type arguments, internal ultrapower
etc. which give endextensions are of no use. Let M = {x € N |z < y for some y €
PTC(n)}. Then M is closed under the smash function, hence M is a model of Ss.
First we define L to be the set of all bounded subsets of PTC(n) defined by -
formulas, in other words, o € L if and only if there exists a X’-formula ®(z,y) and

a € PTC(n) such that

a={x € PTC(n) | PTC(n) E ®(z,a) Nz < a}.

For such o, ®(z,y) and a € PTC(n), let

ay ={xeM|ME ®(x,a) Nz < a}.

If P = NP, then PTC(n) is a Yb-elementary substructure of M, hence a = apr N

PTC(n). Since ayy is definable in N, there exists a ¢, € N such that

ay = {x € N |bit(cq,x) = 1}.

By identifying a € L with ¢4, we can consider L C N. Let a = {n} € L, then ¢, = 2",

so L contains 2".
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Lemma 1. If P = NP, then L is an endextension of PTC(n).

Proof. Let ¢, € L. Then there is a X’-formula ®(x,%) and a a € PTC(n) C M such
that « = {x € PTC(n) | PTC(n) E ®(z,a) Nx < a}. Let b € PTC(n) be such that

Ca < b, then we have
a={x € PTC(n) | PTC(n) E ®(z,a) Nx < |b|}.

Since we are assuming P = NP, PT'C(n) is a model of So, hence ¢, € PTC(n).
Lemma 2. If P = NP, then a € L implies |1a] € L.
Proof. Let ®(x,y) and a € PTC(n) define a;, i.e.
a={x € PTC(n) | PTC(n) E ®(z,a) Nz < a},
then

L%aj ={z € PTC(n) |PTC(n) E®(x+1,a) N < a—1}.

Lemma 3. If P = NP, then o, 8 € L implies aff € L.

Proof. Let ®(z,y) and a € PT'C(n) (resp. ¥(x,y) and b € PT'C(n)) define « (resp. f3),
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then

af = {x € PTC(n) | PTC(n) E x = maz(«) + maz(3)}

={zx € PTC(n) |PTC(n) EJy<adz<blz=y+2ANP(y) AN¥(z)

AV < a(y < v — =P(v)) AVw < b(z < w— ¥ (w)) ANx < a+ b}

Lemma 4. If P = NP, then o, € L implies o+ 3 € L.

Proof. Let ®(x,y),V(z,y) and a,b € PTC(n) be as in the proof of Lemma 3. Then

a + (3 is defined by the following bounded formula and max(a,b) + 1.

(2(z,y) A¥(2,y)) A Fi < 2(=P(i,y) A=W (i,y) AVj <z(i <j— (20, y)A¥(],y)))))

V(=(@(x, y) AV (z,y)) A Fi < 2(P(i,y) ANV(i,y) AV] <x(i <j— (2(,y)A%(5,9)))))

where AWV denotes (P A —¥) V (=P A T).

Next we consider multiplication on L. To prove that L is closed under multiplication,

we need more assumption than P = NP.

Lemma 5. Assume that P = PSPACE, then o, 3 € L implies o - 3 € L.

Proof. o~ is computable by a PSPACE machine with oracles o and 3, more precisely,

there exists an oracle PSPACE-machine S(x;a, 3) such that

x € a- f if and only if S(z; «, 3).
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Since «, 8 € L and P = PSPACE, S(x, a, 3) is poly-time computable, hence o - 3 € L.
Lemma 6. Assume that P = PSPACE, then L is a model of ¥4 — LIND.

Proof. Let ®(x) be a ¥-formura, then there is a Z(l)’b formula ¢(z) such that

L = ®(z) if and only if PTC(n) = ¢(x).

Assume that PTC(n) = ¢(0) A =¢(t) for some t € PTC(n). Since we are assuming
P = PSPACE, we can find x € PT'C(n) by a PSPACE-machine such that PT'C(n) =

¢(x) AN —=¢p(x + 1), as contended.
Conjecture. Assume that P = PSPACE, then L is a model of AY — LLIND.

If we prove the Conjecture, then by Theorem 1, we can conclude P # PSPACE.
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