ENDEXTENSIONS IN BOUNDED ARITHMETIC AND COMPUTATIONAL COMPLEXITY

Masahiro Yasumoto

Graduate School of Human Informatics Nagoya University

ABSTRACT. Let N be an elementary extension of \mathbb{N} and $n \in N - \mathbb{N}$. We prove that PTC(n) has no proper endextension of Δ_1^b -LLIND and consider conditions that a model of bounded arithmetic has a proper end extension.

Let N be an elementary extension of the set of natural numbers \mathbb{N} and M be a

substructure of N which is a model of PA^- , then M has a proper endextension of PA^- .

If M satisfies PA, then it is well known that M also has a proper endextension of PA. In

this paper, we consider conditions that a model M of a theory T in bounded arithmetic

has a proper endextension of some subtheory of T.

This research is partially supported by Grant-in-Aid for Scientific Research(No.12640115), Ministry of Education, Science and Culture of Japan.

1. Polynomial time closure

Let *n* be a nonstandard element i.e. $n \in N - \mathbb{N}$. PTC(n) denotes the polynomial time closure of $\{n\}$ in *N*, then PTC(n) is a model of T_2^0 . If $\mathbf{P} = \mathbf{NP}$, then PTC(n) is a model of S_2 . In this section, we prove

Theorem 1. PTC(n) has no proper endextension which satisfies $\Delta_1^b - LLIND$.

Let $T(e, x; \alpha)$ be an oracle Turing machine satisfying the condition that for any oracle Turing machine $T'(x; \alpha)$ there are infinitely many natural numbers e such that

$$T(e, x; \alpha) = T'(x; \alpha).$$

Let $T(e, x; \alpha)(t)$ denote the content of the output tape of the machine T at the time t of the computation with an input x. Then $y = T(e, x; \alpha)(|z|)$ can be written as a $\Delta_1^b(\alpha)$ -formula which we write by

$$y = \{e\}(x, |z|; \alpha).$$

The polynomial time closure PTC(n) of $\{n\}$ is the set

$$\{\{e\}(n, |n|^{|e|}; \emptyset) \mid e \in \mathbb{N}\}.$$

Assume that PTC(n) has a proper endextension L of $\Delta_1^b - LLIND$. Let $m \in L - PTC(n)$. Since L is an endextension of PTC(n), for all $e \in \mathbb{N}$ we have $m > 2^{|n|^e} \in \mathbb{N}$

PTC(n). Now we consider the following infinite set

$$\alpha = \{ x \in PTC(n) \mid x < |n| \}.$$

Since L is an endextension of PTC(n), α is defined in L by a Δ_1^b -formula with the

parameters n and m, i.e.

 $\alpha = \{ x \in L \mid L \models x < |n| \land x = \{e\}(n, |n|^{|e|}; \emptyset) \text{ for some } e \in \mathbb{N} \}$

 $= \{ x \in L \mid L \models x < |n| \land \exists e < ||m|| (x = \{e\}(n, |n|^{|e|}; \emptyset) \land \forall y < e(x \neq \{y\}(n, |n|^{|y|}; \emptyset))) \}.$

Then \mathbb{N} is defined in L by a Δ_1^b -formula with parameters n and m,

$$\mathbb{N} = \{ e \in L \mid L \models e < ||m|| \land \exists x < |n|(x = \{e\}(n, |n|^{|e|}; \emptyset) \land \forall y < e(x \neq \{y\}(n, |n|^{|y|}; \emptyset))) \}$$

Let $\Phi(e, m, n)$ be the defining Δ_1^b -formula of \mathbb{N} in L, then $LLIND(\Phi(x, m, n))$ does not hold in L.

2. Endextensions

In this section, we try to construct an endextension L of PTC(n) which contains 2^n . Since $\exists x(x = 2^n)$ holds in L but not in PTC(n), L cannot be an elementary extension of PTC(n). So many tools in model theory, omitting type arguments, internal ultrapower etc. which give endextensions are of no use. Let $M = \{x \in N \mid x < y \text{ for some } y \in PTC(n)\}$. Then M is closed under the smash function, hence M is a model of S_2 .

First we define L to be the set of all bounded subsets of PTC(n) defined by Σ^{b} formulas, in other words, $\alpha \in L$ if and only if there exists a Σ^{b} -formula $\Phi(x, y)$ and $a \in PTC(n)$ such that

$$\alpha = \{ x \in PTC(n) \mid PTC(n) \models \Phi(x, a) \land x < a \}.$$

For such α , $\Phi(x, y)$ and $a \in PTC(n)$, let

$$\alpha_M = \{ x \in M \mid M \models \Phi(x, a) \land x < a \}.$$

If $\mathbf{P} = \mathbf{NP}$, then PTC(n) is a Σ^b -elementary substructure of M, hence $\alpha = \alpha_M \cap$

PTC(n). Since α_M is definable in N, there exists a $c_{\alpha} \in N$ such that

$$\alpha_M = \{ x \in N \mid bit(c_\alpha, x) = 1 \}.$$

By identifying $\alpha \in L$ with c_{α} , we can consider $L \subset N$. Let $\alpha = \{n\} \in L$, then $c_{\alpha} = 2^n$,

so L contains 2^n .

Lemma 1. If $\mathbf{P} = \mathbf{NP}$, then L is an endextension of PTC(n).

Proof. Let $c_{\alpha} \in L$. Then there is a Σ^{b} -formula $\Phi(x, y)$ and a $a \in PTC(n) \subset M$ such that $\alpha = \{x \in PTC(n) \mid PTC(n) \models \Phi(x, a) \land x < a\}$. Let $b \in PTC(n)$ be such that $c_{\alpha} < b$, then we have

$$\alpha = \{ x \in PTC(n) \mid PTC(n) \models \Phi(x, a) \land x < |b| \}.$$

Since we are assuming $\mathbf{P} = \mathbf{NP}$, PTC(n) is a model of S_2 , hence $c_{\alpha} \in PTC(n)$.

Lemma 2. If $\mathbf{P} = \mathbf{NP}$, then $\alpha \in L$ implies $\lfloor \frac{1}{2}\alpha \rfloor \in L$.

Proof. Let $\Phi(x, y)$ and $a \in PTC(n)$ define α , i.e.

$$\alpha = \{ x \in PTC(n) \mid PTC(n) \models \Phi(x, a) \land x < a \},\$$

then

$$\lfloor \frac{1}{2}\alpha \rfloor = \{ x \in PTC(n) \mid PTC(n) \models \Phi(x+1, a) \land x < a-1 \}.$$

Lemma 3. If $\mathbf{P} = \mathbf{NP}$, then $\alpha, \beta \in L$ implies $\alpha \sharp \beta \in L$.

Proof. Let $\Phi(x, y)$ and $a \in PTC(n)$ (resp. $\Psi(x, y)$ and $b \in PTC(n)$) define α (resp. β),

then

$$\begin{split} \alpha \sharp \beta &= \{ x \in PTC(n) \mid PTC(n) \models x = max(\alpha) + max(\beta) \} \\ &= \{ x \in PTC(n) \mid PTC(n) \models \exists y < a \exists z < b(x = y + z \land \Phi(y) \land \Psi(z) \\ &\land \forall v < a(y < v \to \neg \Phi(v)) \land \forall w < b(z < w \to \neg \Psi(w)) \land x < a + b \}. \end{split}$$

Lemma 4. If $\mathbf{P} = \mathbf{NP}$, then $\alpha, \beta \in L$ implies $\alpha + \beta \in L$.

Proof. Let $\Phi(x, y), \Psi(x, y)$ and $a, b \in PTC(n)$ be as in the proof of Lemma 3. Then $\alpha + \beta$ is defined by the following bounded formula and max(a, b) + 1.

$$((\Phi(x,y) \triangle \Psi(x,y)) \land \exists i < x(\neg \Phi(i,y) \land \neg \Psi(i,y) \land \forall j < x(i < j \to (\Phi(j,y) \triangle \Psi(j,y))))) \land \forall i < x(\Phi(i,y) \land \Psi(i,y) \land \forall j < x(i < j \to (\Phi(j,y) \triangle \Psi(j,y)))))$$

where $\Phi \bigtriangleup \Psi$ denotes $(\Phi \land \neg \Psi) \lor (\neg \Phi \land \Psi)$.

Next we consider multiplication on L. To prove that L is closed under multiplication, we need more assumption than $\mathbf{P} = \mathbf{NP}$.

Lemma 5. Assume that $\mathbf{P} = \mathbf{PSPACE}$, then $\alpha, \beta \in L$ implies $\alpha \cdot \beta \in L$.

Proof. $\alpha \cdot \beta$ is computable by a **PSPACE** machine with oracles α and β , more precisely, there exists an oracle **PSPACE**-machine $S(x; \alpha, \beta)$ such that

$$x \in \alpha \cdot \beta$$
 if and only if $S(x; \alpha, \beta)$.

Since $\alpha, \beta \in L$ and $\mathbf{P} = \mathbf{PSPACE}$, $S(x, \alpha, \beta)$ is poly-time computable, hence $\alpha \cdot \beta \in L$.

Lemma 6. Assume that $\mathbf{P} = \mathbf{PSPACE}$, then L is a model of $\Sigma_0^b - LIND$.

Proof. Let $\Phi(x)$ be a Σ_0^b -formura, then there is a $\Sigma_0^{1,b}$ formula $\phi(x)$ such that

 $L \models \Phi(x)$ if and only if $PTC(n) \models \phi(x)$.

Assume that $PTC(n) \models \phi(0) \land \neg \phi(t)$ for some $t \in PTC(n)$. Since we are assuming

 $\mathbf{P} = \mathbf{PSPACE}$, we can find $x \in PTC(n)$ by a \mathbf{PSPACE} -machine such that $PTC(n) \models \mathbf{PSPACE}$

 $\phi(x) \wedge \neg \phi(x+1)$, as contended.

Conjecture. Assume that $\mathbf{P} = \mathbf{PSPACE}$, then L is a model of $\Delta_1^b - LLIND$.

If we prove the Conjecture, then by Theorem 1, we can conclude $\mathbf{P} \neq \mathbf{PSPACE}$.

References

- 1. P.Hajek and P. Pudlak, Metamathematics of First-Order Arithmetic, Springer-Verlag, 1993.
- G.Takeuti and M.Yasuoto, Forcing on Bounded Arithmetic, Gödel'96 (P.Hájek, eds.), Lecture Notes in Logic 6 (1996), pp. 120-138.
- G.Takeuti and M.Yasuoto, Forcing on Bounded Arithmetic II, Journal of Symbolic Logic 63 (1998), pp. 860-868.

MASAHIRO YASUMOTO GRADUATE SCHOOL OF HUMAN INFORMATICS NAGOYA UNIVERSITY CHIKUSA-KU, NAGOYA, 464-8601, JAPAN *E-mail address*: yasumoto@info.human.nagoya-u.ac.jp