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Abstract

A model with time delay is considered for a predator-prey system. Here, a single
species disperses between n patches of a heterogeneous environment with barriers be-
tween patches while a predator does not involve a barrier between patches. It is shown
that the system is permanent under some appropriate conditions, and sufficient condi-
tions are established for the global asymptotic stability of the positive equilibrium of
the system.

Keywords: Permanence; globally asymptotically stable; predator-prey dynamics; equi-
librium; positive solution.

1 Introduction

Much interest has been growing in the study of mathematical models of biological populations
dispersing among patches in a heterogeneous environment, which has been the subject of
several recent papers (see e.g. [1]–[7], [9, 10, 16, 17, 19, 20] and references cited therein).
Particularly, the single population dispersing among patches has been studied in [1], [3]–[9],
and the predator-prey interactions in a patchy environment have been dealt with in [2], [5]–
[7], [10, 17, 18]. Some of them, [1, 4, 5, 17, 21, 22] deal with the question of global stability
of the equilibrium solution.

This paper is concerned with a model of a single species that disperses among the n
patches of a heterogeneous environment with barriers between patches, and with a predator
against the species for which the dispersal between patches does not involve a barrier, and
due to gestation the time delay is considered. Such models are often found in nature and we
can find their examples in [11, 12].

The work in this paper can be regarded as a continuation of the work in [4, 5, 24].
In particular the model we choose to study here is based upon those developed in [5, 24].
Freedman and Takeuchi [5] considered the system of n+ 1 autonomous ordinary differential
equations as a model of the predator-prey system living in a patchy environment and the
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question of global stability for the single-species (prey) subsystem. They deal with the
extinction and persistence of the predator. Wa and Ma [24] considered the asymptotic
behavior of solutions of a predator-prey system incorporating time delay, in which the prey
disperses between just two patches of a heterogeneous environment. Then how about the
result for the model which deals with a single species that disperses between n patches?

In this study, we analyze such a system with n patches, each is permitted to have a
different level of difficulty in its “escaper” barrier. Furthermore, once the population has
left its present patch it may not successfully reach a new one of the environment (predation,
harvesting, or for other reasons). In the analysis, we regard the probabilities of a successful
transition between patches as a given condition, and show that the equilibrium is permanent
under some appropriate conditions, and that the delay does not affect the permanence of
the populations. Moreover, sufficient conditions are established for the global asymptotic
stability of the positive equilibrium of the system.

The paper is organized as follows. In the next section, our model is described in detail.
Section 3 deals with the question of the existence of positive equilibrium. In Section 4, we
obtain sufficient conditions, under which the populations are permanent, and other sufficient
conditions are established to ensure the absolute global asymptotic stability of the positive
equilibrium of the system. A special case is considered in Section 5. Lastly, Section 6 gives
a discussion of our results.

2 Modelling equations

We consider the following predator-prey system with diffusion and time delay in an n-patch
environment:


ẋi = xifi(xi, y)− εihi(xi) +

n∑
j=1, j �=i

pjiεjhj(xj), i = 1, 2, . . . , n

ẏ = y

(
−s(y) +

n∑
i=1

ciPi(xi(t− τ ))

)
,

(2.1)

with x(θ) = φ(θ) ≥ 0, θ ∈ [−τ, 0], y(0) ≥ 0. Here the dot denotes the differentiation with
respect to time, xi(t) (i = 1, . . . , n) represents the prey population in the ith patch at a given
time t ≥ −τ , while y(t) stands for the total predator population for n patches. The barriers
of patches are assumed to be effective only as far as the prey population is concerned; thus
the predator population has no barriers between patches. The function fi(x, y) is the specific
growth rate of the prey relating to the predator biomass y, the function hi(xi) is the desire
to disperse out of the ith patch, pji is the probability of successful transition from jth patch
to ith patch, where i is different from j, and Pi(xi) is the predator functional response of
the predator population on the prey in the ith patch. s(y) is the density-dependent death
rate of the predator in the absence of its food (the prey).

The quantity τ ≥ 0 stands for a constant delay due to gestation. Moreover the inverse
barrier strength εj is nonnegative, whereas the conversion ratio of prey into predator ci
positive. Fig. 2.1 displays the circumstances that the prey population, who leaves the jth
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patch, reachs other patches at time t. The hatched part in the jth patch is the total of the
prey population leaving the patch at time t.
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Prey
nth patch

. . . . .

Prey
ith patch. . . . .

Prey
jth patch

.

.

.

Predator
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p ε h (x )   ij    i   i    i

.

Figure 2.1: The n-patch configuration

Set

R
n
+ = {x = (x1, . . . , xn) : xi ≥ 0, i = 1, . . . , n};

and let

C+ ≡ C([−τ, 0],Rn+1
+ ),

denote the Banach space of continuous functions mapping the interval [−τ, 0] into R
n+1
+ . C+

is chosen as the initial function space for system (2.1).
The system (2.1) brings the following assumptions, all of which are usual in modelling

the target phenomena.

(H1) fi, Pi and hi are continuously differentiable for all i ;

(H2) fi(0, 0) > 0; ∂fi/∂xi < 0 in int R
n+1
+ ; there is a ki > 0 such that fi(ki, 0) = 0,

i = 1, . . . , n;

(H3) ∂fi/∂y < 0 in int R
n+1
+ , i = 1, . . . , n;

(H4) Pi(0) = 0; P ′
i (x) > 0 for positive x (i = 1, . . . , n);

(H5) s(0) = 0, s′(y) > 0 for y > 0, s(y) → +∞ as y → +∞;

(H6) hi(0) = 0, η ≥ h′i(xi) ≥ h′i(0) > 0;
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(H7) 0 ≤ pji ≤ 1,

n∑
i=1, i�=j

pji ≤ 1.

Note that in (H6) the requirement h′i(x) ≥ h′i(0) > 0 is a technical condition required in
the proofs. The quantity η is a bound on the growth rate of hi(xi) for all i. Without loss of
generality, we assume that h′i(0) = 1.

For notational simplicity, define pii = −1, i = 1, . . . , n and we rewrite the system (2.1)
as 


ẋi = xifi(xi, y) +

n∑
j=1

pjiεjhj(xj), i = 1, 2, . . . , n

ẏ = y

(
−s(y) +

n∑
i=1

ciPi(xi(t− τ ))

)
.

(2.2)

Lastly, assume that

εi = αiε, αi > 0, pji �= 0, i, j = 1, . . . , n,

then the system (2.2) becomes


ẋi = xifi(xi, y) + ε
n∑

j=1

pjiαjhj(xj), i = 1, 2, . . . , n

ẏ = y

(
−s(y) +

n∑
i=1

ciPi(xi(t− τ ))

)
,

(2.3)

Hereafter we suppose that all the above assumptions are satisfied throughout the paper.

Since y(t) ≡ 0 satisfies the second equation of (2.3), when we denote by (ξ1, ξ2, . . . , ξn)
the solution of the simultaneous equations

xifi(xi, 0) + ε
n∑

j=1

pjiαjhj(xj) = 0 (i = 1, . . . , n)

with respect to xi (i = 1, 2, . . . , n), the constant solution

xi(t) ≡ ξi (i = 1, 2, . . . , n), y(t) ≡ 0

fulfils (2.3). Therefore, we introduce the quantity

d = −s(0) +

n∑
i=1

ciPi(ξi). (2.4)

As d depends on ε, we often write d as d(ε), too.
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Furthermore, let us introduce

ψ(x1, . . . , xn) =




s−1

(
n∑

i=1

ciPi(xi)

)
if

n∑
i=1

ciPi(xi) > s(0),

0 otherwise,

where s−1 denotes the inverse function of s(y), y ∈ [0,+∞), then ψ is readily proved to be
nonnegative and continuous on R

n
+ and to satisfy

∂ψ/∂xi > 0 i = 1, . . . , n, when ψ(x1, . . . , xn) > 0.

Next we will give the definition of notions which are fundamental in this paper.

Definition 2.1 ([16], P273) We say a population x(t) is permanent if there exist two positive
constants m and M , m < M , such that, for sufficiently large t, the bound m ≤ x(t) ≤ M
holds. We say a system of populations is permanent if all of its components are permanent.

Definition 2.2 ([16], P149) The equilibrium E(x1, . . . , xn, y) of system (2.1) (equivalently
of (2.3)), if it exists, is said to be globally asymptotically stable (G.A.S.), if, for a fixed τ ,
all positive solutions of system (2.1) tend to E as t→ +∞.

We say E(x1, . . . , xn, y) is absolutely globally asymptotically stable (A.G.A.S.) if it is
globally asymptotically stable for all τ > 0.

For the discussion of the following sections, now we concern a general n-dimensional
cooperative system

ẋ = F (x), (2.5)

where F belongs to C1-class on a domain R
n
+ and has Jacobian matrix DF (x) with nonneg-

ative off-diagonal elements, i.e., for all i �= j, i, j = 1, . . . , n, ∂Fi/∂xj ≥ 0, for all x ∈ R
n
+.

Denote the solution of (2.5) as x(t) whose initial value is x(0). The reference [13, 19, 20]
gives the following.

Lemma 2.1 (i) Suppose that x(t) is the positive solution of (2.5), then x(t) is strictly in-
creasing (decreasing) and converges to an equilibrium of (2.5) provided that F (x(0)) > 0
(F (x(0)) < 0) and it is bounded.

(ii) Suppose that x(t) is the positive solution of (2.5) existing on [0,+∞). Then if ṁ(t) ≤
F (m(t)), t ≥ 0, and m(0) ≤ x(0), we have m(t) ≤ x(t) for t ≥ 0. Furthermore, if
ṁ(t) ≥ F (m(t)), t ≥ 0 and m(0) ≥ x(0), we have m(t) ≥ x(t), t ≥ 0.
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3 Positive Equilibria

The origin E0(0, . . . , 0) is clearly an equilibrium of (2.3). When ε = 0, there may be an
equilibrium in the positive subspace, i.e., of the form Ê(ξ1, . . . , ξn, 0), where ξi > 0,i =
1, . . . , n. Let P denote the n × n matrix (pji). By [4], we know that Ê also exists for

sufficiently small ε, and they show that if detP = 0, Ê exists for all ε > 0. Hereafter, we
deal with the positive equilibrium of the system (2.1).

We fix y as a nonnegative λ and consider the subcommunity equations consisting of n
preys:

ẋi = xifi(xi, λ) + ε

n∑
j=1

pjiαjhj(xj) (i = 1, . . . , n). (3.1)

Let (x∗1(λ), . . . , x
∗
n(λ)) be the positive equilibrium of (3.1).

We will study the global stability of the positive equilibrium, when it exists, of system
(3.1) and denote this equilibrium by E(λ)(x

∗
1(λ), . . . , x

∗
n(λ)) throughout this section. We

assume that E(λ) is unique if it exists.

Lemma 3.1 Suppose that λ satisfies fi(0, λ) > 0 (i = 1, . . . , n), and the two conditions

(i) 0 ≤ ε ≤ min(fi(0, λ)/αi) (i = 1, . . . , n),

(ii) lim
xi→∞

fi(xi, y) = −∞

hold. Then the system (3.1) has a G.A.S. positive equilibrium E(λ).

One can adopt the technique of Theorems 3.1 and 4.1 in [5] to prove this lemma, since
the system (3.1) is similar to that given by Eq. (3.4) of [5].

Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied, then every component of
the equilibrium E(λ) of system (3.1) is continuous and strictly decreasing with respect to λ
defined on the set D = {λ ≥ 0 : fi(0, λ) > 0 (i = 1, . . . , n)}.

Proof. Let λ1 and λ2 be in D and ordered as λ1 < λ2. Suppose that (u1(t), . . . , un(t)) is the
solution of the system (3.1) initiating at (x∗1(λ2), . . . , x

∗
n(λ2)).

Now we rewrite the subcommunity equations (3.1) as

ẋi = Fi(x1, . . . , xn;λ), i = 1, . . . , n. (3.2)

The assumption (H3) implies the inequality

Fi(u1(0), . . . , un(0);λ1) > Fi(x
∗
1(λ2), . . . , x

∗
n(λ2);λ2) = 0 (i = 1, . . . , n),

which asserts that (u1(t), . . . , un(t)) is strictly increasing and converges to (x∗1(λ1), . . . , x
∗
n(λ1))

by applying Lemma 2.1. Consequently the order x∗i (λ1) > x∗i (λ2) holds for all i = 1, . . . , n.
Therefore (x∗1(λ), . . . , x

∗
n(λ)) is strictly decreasing.
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Next we will show the continuity. Let

x∗(λ) = E(λ)(x
∗
1(λ), . . . , x

∗
n(λ))

be a positive equilibrium of the system (3.1). For a function defined by

ϕi(a, x
∗) = ax∗ifi(ax

∗
i , λ) − εαihi(ax

∗
i ) + ε

n∑
j=1, j �=i

pjiαjhj(ax̂j),

we have

∂ϕi

∂a
(0, x∗) = x∗i fi(0, λ) − x∗i εαi + ε

∑
j=1, j �=i

pjiαjx
∗
j .

Since 0 ≤ ε ≤ min
1≤i≤n

(fi(0, λ)/αi), we obtain

∂ϕi

∂a
(0, x∗) > 0 for i = 1, . . . , n.

Hence, there exists a positive a0 which gives ϕ(a, x̂(λ)) > 0 for 0 < a < a0, i = 1, . . . , n.
Since ∂fi/∂xi < 0 and h′i is bounded, the equation lim

xi→∞
fi(xi, y) = −∞ yields that there

exists a positive b0 which derives

ϕi(b, x
∗) < 0 for b > b0 (i = 1, . . . , n).

Henceforth we obtain

Fi(a0x
∗
1(λ), . . . , a0x

∗
n(λ), λ) > 0, Fi(b0x

∗
1(λ), . . . , b0x

∗
n(λ), λ) < 0

and

a0x
∗
i (λ) < x∗i (λ2) < x∗i (λ1) < b0x

∗
i (λ)

for i = 1, . . . , n and λ1 ≤ λ ≤ λ2. Let âi = a0x
∗
i (λ) and b̂i = b0x

∗
i (λ) (i = 1, . . . , n), and

introduce a point-set E of R
n
+ as

E = {(x1, . . . , xn) : âi < xi < b̂i, i = 1, . . . , n, }.
Then it is easily verified that E is a positive invariant of the system (3.1).

Let x(t; x0, λ) be the positive solution of (3.1) initiating at x0. Since (3.1) is autonomous,
it is easily shown that (x∗1(λ

∗), . . . , x∗n(λ
∗)) is uniform attractor of the positive solutions of

(3.1), where λ = λ∗. Consequently, for any β > 0, there is a T > 0 such that any solution
x(t; x0, λ

∗) of (3.1) starting with x0 ∈ E lies in the β-neighbourhood of (x∗1(λ
∗), . . . , x∗n(λ

∗))
for t > T .

Furthermore, one can choose a positive δ such that x(T, x0, λ) lies in the (2β)-neighbourhood
of (x∗1(λ

∗), . . . , x∗n(λ
∗)) when |λ− λ∗| < δ, for the solutions depend on the parameter λ con-

tinouously. As a result, (x∗1(λ), . . . , x
∗
n(λ)) lies in (2β)-neighbourhood for |λ− λ∗| < δ. This

proves that the x∗i (λ) (i = 1, . . . , n) are continuous with respect to λ.
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Lemma 3.3 Suppose the assumption (ii) of Lemma 3.1 are satisfied and the following con-
ditions hold.

(1) −s(0) +

n∑
i=1

ciPi(x
∗
i (0)) > 0;

(2) there exists a positive λ∗ satisfying

min
1≤i≤n

fi(0, λ
∗) > 0 and lim

λ→λ∗−0
{−s(λ) +

n∑
i=1

ciPi(xi(λ
∗))} < 0.

Then there exists a unique positive equilibrium (e1, . . . , en+1) of system (2.3) with 0 ≤ ε ≤
min

1≤i≤n
(fi(0, λ

∗)/αi) in the region 0 < y ≤ λ∗.

Proof. As is described at the beginning of this section, the positive equilibrium of the
system (2.1) can be determined by the following system of equations:

Hi(x1, . . . , xn, y) = 0 (i = 1, . . . , n), and y = ψ(x1, . . . , xn), (3.3)

where Hi(x1, . . . , xn, y) = xifi(xi, λ) + ε
n∑

j=1

pjiαjhj(xj). Since fi(0, y) > 0 for 0 < y ≤ λ∗

(i = 1, . . . , n), Eq. (3.3) has a unique solution (x∗1(y), . . . , x
∗
n(y)) when 0 < y ≤ λ∗ and

0 ≤ ε ≤ min
1≤i≤n

(fi(0, λ
∗)/αi). Due to Lemma 3.2 x∗i (y) is strictly decreasing with respect to

y for every i. Therefore the function G(y) = y − ψ(x∗1(y), . . . , x
∗
n(y)) is strictly increasing.

The inequalities G(0) < 0 and limλ→λ∗−0G(λ) > 0 imply the unique existence of the positive
solution for G(y) = 0 not exceeding λ∗.

4 Criteria for Stability

The main purpose of this section is to show under which conditions the system is permanent
and the positive equilibrium of system (2.1) is globally asymptotically stable.

Theorem 4.1 Let the equilibrium Ẽ of the system (2.3) exists uniquely, and E(0)(x
∗
1(0), . . . , x

∗
n(0))

is G.A.S. in the x-space. Then the negativeness of d = d(ε) defined by (2.4) implies the limits
lim

t→+∞
xi(t) = x∗i (0) (i = 1, . . . , n) and lim

t→+∞
y(t) = 0.

Proof. Consider the system

ẋi ≤ xifi(xi, 0) + ε

n∑
j=1

pjiαjhj(xj), i = 1, . . . , n, (4.1)

and compare this with

v̇i = vifi(vi, 0) + ε
n∑

j=1

pjiαjhj(vj), i = 1, . . . , n. (4.2)

8



Since the solutions of system (4.2) tend to E(0) as t → ∞ by the hypothesis, there exists a
positive T giving the inequality

xi(t) ≤ x∗i (0) + δ for t ≥ T.

Choose δ > 0 so small that the inequality −s(0) +
n∑

i=1

ciPi(x
∗
i (0) + δ) < 0 holds. Then we

have ẏ < y[−s(0) +
n∑

i=1

ciPi(xi(t− τ ))] < 0 for t ≥ T + τ . This completes the proof.

Theorem 4.2 Suppose d(ε) > 0. Then the system (2.1) exhibits permanence.

Proof. At first, we show the positive solutions of system (2.1) are eventually bounded. Since
the solutions are positive and we assume (H3), we have

ẋi = xifi(xi, y) + ε

n∑
j=1

pjiαjhj(xj)

< xifi(xi, 0) + ε
n∑

j=1

pjiαjhj(xj). i = 1, . . . , n.

Comparing this system with

ẋi = xifi(xi, 0) + ε
n∑

j=1

pjiαjhj(xj), i = 1, . . . , n,

we can find (b1, . . . , bn) with positive bi (i = 1, . . . , n) which gives upper bound of any
positive solution (x1(t), . . . , xn(t), y(t)) of system (2.1) as xi(t) < bi (i = 1, . . . , n) for
sufficiently large t. This can be seen though the proof of Lemma 3.2 by letting, for example,
bi = b0x

∗
i (0).

Henceforth the first n components of positive solutions of system (2.1) are eventually
bounded, and thus, the sum of ciPi(xi(t− τ )), (i = 1, . . . , n), is eventually bounded as well.
By (H5), there exists k > 0 such that y(t) < k for all sufficiently large t. Therefore the
positive solutions of system (2.1) are eventually bounded.

Secondly, we show uniformly persistence of the system. Let

C1 = {ζ = (0, . . . , 0, ζn+1) ∈ C+};
C2 = {ζ = (ζ1, . . . , ζn, 0) ∈ C+}.

And let C∗ = C1 ∪ C2, by Theorem 4.1 in [8], and adopting the technique of Theorem 1 in
[24], we can know C∗ is a uniform repeller. Therefore, there exists a δ1 such that for any
positive solution (u1(t), . . . , un(t), v(t)) of system (2.1), v(t) > δ1 for all sufficiently large t
and {u1(t), . . . , un(t), v(t)} lies outside of the region

{(x1, . . . , xn, y) ∈ R
+
n+1 : 0 ≤ xi ≤ δ1, i = 1, . . . , n},
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when t is sufficiently large.
Without loss of generality, we can assume that there exists an integer m1 (1 ≤ m1 < n)

satisfying

0 ≤ xi ≤ δi, i = 1, . . . , m1

δj ≤ xj ≤ bj, j = m1 + 1, . . . , n,
0 < y < k,

with positive δi (i = 1, . . . , n).
Then we have

ẋi = xifi(xi, y)− εαihi(xi) + ε
∑
j �=i

pjiαjhj(xj)

≥ xifi(xi, y)− εαihi(xi) + ε
n∑

j=m1+1

pjiαjhj(δj),

for i = 1, . . . , m1.
Since there exist δ∗i and δ̄i satisfying both conditions

hi(xi) <
1

2αi

n∑
j=m1+1

pjiαjhj(δj) for 0 ≤ xi ≤ δ∗i , i = 1, . . . , m1,

and

fi(xi, y) > 0 for 0 < y ≤ δ̄i, 0 ≤ xi ≤ δ̄i, i = 1, . . . , m1,

by putting

δ̃i = min(δ̄i, δ
∗
i ),

we obtain

ẋi >
ε

2

n∑
j=m1+1

pjiαjhj(εj), if 0 ≤ xi ≤ δ̃i.

Therefore the positive solution (u1(t), . . . , un(t), v(t)) can not enter into the region

{x ∈ R
+
n+1, 0 ≤ xi ≤ δi, (i = 1, . . . , m1),

δj ≤ xj ≤ bj, (j = m1 + 1, . . . , n),
0 < y ≤ k},

when t is sufficiently large, for any m1 (1 ≤ m1 < n).
The above discussion leads to the

ui(t) > δi, for all large t and i = 1, . . . , n,

which completes the proof.
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Theorem 4.3 Provided that we have the following conditions

(a) d(ε) > 0,

(b) fi(0, h) > 0, for i = 1, . . . , n, 0 ≤ ε ≤ min
1≤i≤n

(fi(0, h)/αi), where h = ψ(x∗1(0), . . . , x
∗
n(0)),

(c) lim
xi→+∞

fi(xi, y) = −∞,

then the system (2.1) has a unique positive equilibrium (e1, . . . , en+1).

The proof can be obtained by the technique of Theorem 2 in [24].
And Theorem 3 and Corollary 4 in [24] readily yield the following two results of this

section.

Theorem 4.4 Under the assumptions of Theorem 4.3, the positive equilibrium (e1, . . . , en+1)
is absolutely globally asymptotically stable, provided that

σ(σ(y)) < y for en+1 < y < h, (4.3)

where σ(y) = ψ(x∗1(y), . . . , x
∗
n(y)).

Corollary 4.1 Suppose the assumptions of Theorem 4.4 are satisfied except that the condi-
tion on σ is replaced with

−1 < σ′(x) ≤ 0 for all x ∈ (0, h].

Then the statement of Theorem 4.4 remains valid.

5 The special case of linear hi(xi)

In this section, we deal with the special case that the hi(xi) are linear. Then the system
(2.1) can be converted to

ẋi = xifi(xi, y) + ε

n∑
j=1

pjiβjxj,

ẏ = y

(
−s(y) +

n∑
i=1

ciPi(xi(t− τ ))

)
.

(5.1)

We show that the theorems of the previous section are valid without the requirement of the
assumption for ε and the assumption (ii) in Lemma 3.1.

When y(t) = λ, the function ϕi in the proof of Lemma 3.2 can be simplified as

ϕi(a, x̂) = ax̂ifi(ax̂i, λ) + aε
n∑

j=1

pjiβjx̂j = ax̂i(fi(ax̂i, λ) − fi(x̂i, λ)).
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Since ∂fi/∂xi is negative, and fi(xi, λ) is a decreasing function of xi, we can get

ϕi(a, x̂) < 0 for 0 < a < 1.

On the other hand, we have

ϕi(a, x̂) > 0 for a > 1.

Therefore we can assert

Fi(ax̂1, . . . , ax̂n, λ) < 0 for 0 < a < 1 and Fi(ax̂1, . . . , ax̂n, λ) > 0 for a > 1,

where Fi is defined by (3.2).
Due to Theorem 4.4 in [4], the equality detP = 0 implies that the system (3.1) has

an equilibrium, which is shown to be A.G.A.S. by Theorem 6.1 in [5]. Therefore, applying
similar techniques in the proofs of the theorems of the present paper, we can obtain the
following.

Theorem 5.1 If detP = 0, d(ε) > 0 and the condition (4.3) hold, then the system (2.1)
with linear hi(xi) (i = 1, . . . , n) has a unique A.G.A.S. equilibrium for all ε ≥ 0.

Remark 5.1 In the case of linear hi(xi), the assumption of the uniqueness of E(λ) in Section
3 can be relaxed, for Theorem 6.2 of [5] guarantees the uniquness as an automatic consequence
of the linearity.

Remark 5.2 Consider the case that when any member of the prey leaves a given patch, it
successfully reach a new patch in the environment. As described in [11], the case is observed
in the mite dispersal on strawberry patches. Then the condition detP = 0 is always satisfied,
since

∑n
i=1,i�=j pji = 1. Hence the assumptions of Theorem 5.1 can be simplified.

6 Concluding remarks

We have analyzed a predator-prey system with time delay and dispersal among n patches
in a heterogeneous environment. The barriers are considered only for the prey, but not
for the predator, between patches. Furthermore, we have assumed that there is a positive
probability that any member of the prey, who leaves a given patch, may not reach safely
any other patch in the environment. Criteria for permanence and extinction are presented.
Conditions, under which the positive steady state is absolutely globally asymptotically stable,
are obtained by the continuity and monotonicity of the subsystem of the preys. Furthermore
we have obtained criteria for the equilibrium to be absolutely globally asymptotically stable
in the case that the dispersal is linear.

Theorem 4.2 may be regarded as an extension of similar results in [5] and [24]. In the
former they show the persistence of the system without delay term, which means that each
component N(t) of the system satisfies lim inft→∞N(t) > 0, when N(0) > 0. The latter
considered a model in a two-patch environment and with time delays. Since we deal with
the delay in the system, the system (2.1) is obviously more general than either in [24] or in
[5].

Mathematically, we can further assume that there are barriers against predator dispersal
among patches. We leave this to future studies.
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