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Abstract

Stochastic differential equations (SDEs) represent physical phenomena dominated
by stochastic processes. Similar to deterministic ordinary differential equations (ODEs),
various numerical schemes are proposed for SDEs. Stability analysis is significant for
numerical SDEs as well, however a few results have been known. We have proposed
the mean-square stability of numerical schemes for a scalar SDE, that is, the numeri-
cal stability with respect to the mean-square norm. We studied it, however, only for
scalar SDEs because of difficulty and complexity in SDE systems. Trying to make a
breakthrough, in the present note we will consider a 2-dimensional linear system with
one multiplicative noise and give stability criteria under several notions of the matrix
norm.

1 Introduction

We ([7]) proposed the numerical mean-square stability (MS-stability) for a scalar stochastic
differential equation (SDE) with one multiplicative noise. However we studied it for only
scalar SDEs. Komori and Mitsui [4, 5] analyzed numerical MS-stability for a 2-dimensional
SDE in a special case, that is, simultaneously diagonalizable case. In this note we will
try to analyze numerical MS-stability of the Euler-Maruyama scheme for more general 2-
dimensional SDE systems.

Consider the SDE of Ito-type given by

dX(t) = f(t,X) dt + g(t,X) dW (t) (1)

with f(0, t) = g(0, t) = 0 so that the steady state X(t) = 0 is the equilibrium solution. The
Euler-Maruyama scheme for the discrete approximate solution {Xn} over the step-points
{tn} is given by

Xn+1 = Xn + f(tn, Xn)h + g(tn, Xn)∆Wn

where h and ∆Wn stand for the step-size and the increment of the Wiener process, respec-
tively. Then we can give the definition of the MS-stability.

Definition 1 Steady solution X(t) ≡ 0 is asymptotically stable in mean-square if the esti-
mations

∀ε > 0, ∃δ > 0; E
(‖X(t)‖2

)
< ε for all t ≥ 0 and ‖X0‖ < δ
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and

∃δ0; lim
t→∞

E
(‖X(t)‖2

)
= 0 for all ‖X0‖ < δ0

hold.

Here the norm ‖x‖ stands for the Euclidean norm of a vector x ∈ R
2.

The concept of numerical stability means whether a numerical solution can keep a similar
asymptotic property as n tends to infinity when it is applied to the asymptotically stable
SDE in mean-square. We will consider a general type of linear SDE systems, for we take
the standpoint of linear stability analysis. In the next section we describe criteria of MS-
stability for the SDE system. Section 3 shows the conditions of numerical MS-stability of
the Euler-Maruyama scheme corresponding to Section 2. In Section 4 we will show the
numerical experiments confirming our stability analysis in Section 3. Finally we will give
our conclusions and future aspects.

2 Criteria of MS-stability

To carry out a linear stability analysis, we will restrict the SDE (1) to an Ito-type 2-
dimensional linear SDE system with one multiplicative noise, which has the form

{
dX(t) = DX(t) dt + BX(t) dW (t),
X(0) = 1.

(2)

Here the real constant matrices D and B are given by

D =

[
λ1 0
0 λ2

]
and B =

[
α1 β1

β2 α2

]
.

Komori and Mitsui [4, 5] analyzed MS-stability for SDE system (2) with β1 = 0 and
β2 = 0, that is, for the simultaneously diagonalizable system. We will consider more general
SDE system, namely β1 �= 0 and β2 �= 0. First we will introduce the conventional and the
logarithmic norms of matrices for the analysis.

Definition 2 Corresponding to the vector norms l1, l2 and l∞ in R
n, we define the subor-

dinate matrix norms of square n × n matrix A = (aij) by

‖A‖1 = maxj {
∑n

i=1 |aij|} , ‖A‖∞ = maxi

{∑n
j=1 |aij|

}
,

‖A‖2 =
{
maximum eigenvalue of AT A

}1/2
.

The following can be found in [1, 6].
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Definition 3 Logarithmic matrix norm µp[A] (p = 1, 2,∞) is defined by

µp[A] = lim
δ→0+

(‖I + δA‖p − 1)/δ

where I is the unit matrix and h ∈ R.

The following identities are well known to evaluate the logarithmic norms.

µ1[A] = maxj

{
ajj +

∑
i�=j |aij|

}
, µ∞[A] = maxi

{
aii +

∑
j �=i |aij|

}
,

µ2[A] = maximum eigenvalue of (A + AT )/2.

Let P (t) = E(X(t)X(t)T ) be the 2 × 2 matrix-valued second moment of the solution of
(2). Then P (t) obeys the initial value problem of the following matrix ordinary differential
equation (ODE)

dP

dt
= DP + PDT + BPBT (t > 0), (3)

with P (0) = X0X
T
0 . By virtue of the symmetry of the matrix P we have its governing

ODEs of 3-dimension

dY

dt
= MY (4)

where

Y (t) = (Y 1(t), Y 2(t), Y 3(t)), Y 1(t) = E(X1(t))2,

Y 2(t) = E(X2(t))2, Y 3(t) = E(X1(t)X2(t)).

We can readily obtain the following lemma owing to the logarithmic matrix norm µp.

Lemma 1 The linear test system with the unit initial value is asymptotically MS-stable
w.r.t. logarithmic norm µp iff

µp[M] < 0

We will study the MS-stability w.r.t. µ∞ for the test system (2). In fact, a direct calculation
brings the expression of the matrix in (4) as

M =


 2λ1 + α2

1 β2
1 2α1β1

β2
2 2λ2 + α2

2 2α2β2

α1β2 α2β1 λ1 + λ2 + α1α2 + β1β2


 . (5)

Then we reach the following criterion.

Theorem 1 The system (2) is MS-stable w.r.t. µ∞ if the estimation

max
{
2λ1 + (|α1| + |β1|)2, 2λ2 + (|α2| + |β2|)2

}
< 0 (6)

holds.
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Proof. Eq. (5) implies that µ∞[M] equals the maximum of the following three quantities.

2λ1 + α2
1 + β2

1 + 2|α1β1| = 2λ1 + (|α1| + |β1|)2,

2λ2 + α2
2 + β2

2 + 2|α2β2| = 2λ2 + (|α2| + |β2|)2,

λ1 + λ2 + α1α2 + β1β2 + |α1β2| + |α2β1|
We see the following inequality straightforwardly.

λ1 + λ2 + α1α2 + β1β2 + |α1β2| + |α2β1|
≤ λ1 + λ2 + |α1α2| + |β1β2| + |α1β2| + |α2β1|
= λ1 + λ2 + (|α1| + |β1|)(|α2| + |β2|)
≤ 2λ1 + (|α1| + |β1|)2

2
+

2λ2 + (|α2| + |β2|)2

2

Thus we have (6).
Hereafter we assume λ1 < λ2 < 0, for it is a natural condition of asymptotic stability of

ODEs. Theorem 1 has several consequencies as its corollaries.

Corollary 1 The singly anti-diagonal case (SAD case) of the diffusion matrix implies

B =

[
0 β
β 0

]
,

which yields

M =


 2λ1 β2 0

β2 2λ2 0
0 0 λ1 + λ2 + β2


 .

Then we have the stability criterion w.r.t. µ∞ by

max{2λ1 + β2, 2λ2 + β2} < 0. (7)

Remark. In SAD case, since the matrix M has a special form, the condition (7) turns out
to be that w.r.t. µ1 as well.

Note that the condition represented by µ∞ is a sufficient condition for the convergence
to the zero solution. We will show this through the following example of SAD case.

Example 1 The combination with

D =

[ −100 0
0 −1

]
and B =

[
0 2
2 0

]

yields

M =


 −200 4 0

4 −2 0
0 0 −97


 ,

whose logarithmic norms are

µ∞(M) = 2 > 0 but µ2(M) = −101 +
√

9817 < 0.
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Corollary 2 The singly diagonal and anti-diagonal case (SDAD case) of the diffusion matrix
implies

B =

[
α β
β α

]
,

which yields

M =


 2λ1 + α2 β2 2αβ

β2 2λ2 + α2 2αβ
αβ αβ λ1 + λ2 + α2 + β2


 .

Therefore the SDAD case brings the stability criterion w.r.t. µ∞ as

max
{
2λ1 + (|α| + |β|)2, 2λ2 + (|α| + |β|)2

}
< 0. (8)

3 MS-stability of Euler-Maruyama scheme

We now ask what conditions must be imposed in order that the numerical solution {Xn} of
(2) generated by a numerical scheme satisfies

Y n = E|Xn|2 → 0 as n → ∞. (9)

In [7], we showed the (scalar) numerical stability factor |R(h, k)| of the Euler-Maruyama
scheme as

|R(h, k)| = |1 + h
2| + |kh|

with h = hλ and k = µ2/λ when the scheme is applied to the scalar test equation

dX(t) = λX dt + µX dW (t) (λ, µ ∈ C).

The region REM defined by

REM = {(h̄, k); |R(h, k)| < 1 holds}

is called the MS-stability region of the Euler-Maruyama scheme in the scalar case. The
region is displayed in Fig. 1 in the case of λ, µ ∈ R. Through our analysis we will show that
the stability factor R(h, k) as well as the MS-stability region REM is still efficient for the
linear system (2).

When we apply a numerical scheme to (2) and calculate the components of the second
moment of Xn, we obtain a one-step difference equation of the form

Y n+1 = MY n (10)
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Figure 1: MS-stability region of the Euler-Maruyama scheme

where

Y n = (Y
1

n, Y
2

n, Y
3

n), Y
1

n = E(X
1

n)2, Y
2

n = E(X
2

n)2, Y
3

n = E(X
1

nX
2

n). (11)

We shall call M the stability matrix of the scheme. Note that Y n → 0 as n → ∞ if

‖M‖p < 1. (12)

Therefore we introduce

Definition 4 The numerical scheme is said to be MS-stable w.r.t. ‖·‖p if it has M satisfying
‖M‖p < 1.

We will calculate the stability matrix M and an MS-stability criterion w.r.t. ‖ · ‖∞ of
the Euler-Maruyama scheme for the system (2). In the following, let the symbol r(x) stand
for 1 + x.

Theorem 2 For the system (2) we obtain

M =


 r2(λ1h) + α2

1h β2
1h 2α1β1h

β2
2h r2(λ2h) + α2

2h 2α2β2h
α1β2h α2β1h r(λ1h)r(λ2h) + (α1α2 + β1β2)h


 ,

which yields the numerical stability criterion w.r.t. ‖ · ‖∞ as

max{(1 + λ1h)2 + (|α1| + |β1|)2h, (1 + λ2h)2 + (|α2| + |β2|)2h} < 1. (13)
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Proof runs similarly as that for Theorem 1. That is, the inequality

|r(λ1h)r(λ2h) + (α1α2 + β1β2)h| + |α1β2|h + |α2β1|h
≤ |r(λ1h)r(λ2h)| + |α1α2|h + |β1β2|h + |α1β2|h + |α2β1|h
= |r(λ1h)r(λ2h)| + (|α1| + |β1|)(|α2| + |β2|)h
≤ |r(λ1h)|2 + |r(λ2h)|2

2
+

(|α1| + |β1|)2 + (|α2| + |β2|)2

2
h

=
|r(λ1h)|2 + (|α1| + |β1|)2h

2
+

|r(λ2h)|2 + (|α2| + |β2|)2h

2

is employed to derive the above result.

Observing the left-hand side of the MS-stability condition (13), we conclude that we
can check the numerical MS-stability whether the pair (h, k) ≡ (λh, (|α|2 + |β|2)/λ) satisfies
|R(h, k)| < 1 for both (λ1, α1, β1) and (λ2, α2, β2). Namely, we should check whether the
inclusions

(h1, k1) = (λ1h, (|α1|2 + |β1|2)/λ1), (h2, k2) = (λ2h, (|α2|2 + |β2|2)/λ2) ∈ REM

hold for the Euler-Maruyama scheme applied to the system (2).

4 Numerical experiments

We will confirm our MS-stability analysis of the Euler-Maruyama scheme through numerical
experiments. We will describe four examples as follows. All the examples have the same
initial condition as X(0) = (1, 1). In each calculation, 10, 000 sample paths are generated

and the values Y
1

n, Y
2

n and Y
3

n in (11) are plotted versus the time-axis in the figures.

Example 2 Simultaneously diagonalizable case described in [4, 5].

dX =

[ −200 0
0 −100

]
X dt +

[
10 0
0 10

]
X dW (t) (14)

Since λ1 = −200, λ2 = −100, α1 = α2 = 10 and β1 = β2 = 0, we can discriminate the
following cases.
h = 0.005, (h, k) = (−1,−0.5), (−0.5,−1) : stable
h = 0.01, (h, k) = (−2,−0.5), (−1,−1) : unstable
h = 0.02, (h, k) = (−4,−0.5), (−2,−1) : unstable
h = 0.05, (h, k) = (−10,−0.5), (−5,−1) : unstable

Numerical results are in Fig. 2.

Example 3 SAD case given in Cor. 1.

dX =

[ −200 0
0 −100

]
X dt +

[
0 10
10 0

]
X dW (t)
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Figure 2: Example 2. Upper left: h = 0.005, upper right: h = 0.01, lower left: h = 0.02 and
lower right: h = 0.05.

Since λ1 = −200, λ2 = −100, α = 0 and β = 10, we can have the following cases similar to
Example 2.
h = 0.005, (h, k) = (−1,−0.5), (−0.5,−1) : stable
h = 0.01, (h, k) = (−2,−0.5), (−1,−1) : unstable
h = 0.02, (h, k) = (−4,−0.5), (−2,−1) : unstable
h = 0.05, (h, k) = (−10,−0.5), (−5,−1) : unstable

Numerical results are in Fig. 3.

Example 4 SDAD case given in Cor. 2.

dX =

[ −200 0
0 −100

]
X dt +

[
10 2
2 10

]
X dW (t)

Since λ1 = −200, λ = −100, α = 10 and β = 2 in (8), we can discriminate the following two
cases.
h = 0.005, (h, k) = (−1,−0.72), (−0.5,−1.44) : stable
h = 0.01, (h, k) = (−2,−0.72), (−1,−1.44) : unstable

Numerical results are in Fig. 4.
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Figure 3: Example 3. Upper left: h = 0.005, upper right: h = 0.01, lower left: h = 0.02 and
lower right: h = 0.05.
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Example 5 Another SDAD case.

dX =

[ −200 0
0 −100

]
X dt +

[
2 10
10 2

]
X dW (t)

Since λ1 = −200, λ = −100, α = 2 and β = 10 in (8), discrimination in the numerical
stability turns out to be same as in Example 4.
h = 0.005, (h, k) = (−1,−0.72), (−0.5,−1.44) : stable
h = 0.01, (h, k) = (−2,−0.72), (−1,−1.44) : unstable

Numerical results are in Fig. 5.
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Figure 4: Example 4. Left: h = 0.005 and right: h = 0.01.

Example 6 Another SDAD case.

dX =

[ −200 0
0 −100

]
X dt +

[
5 10
10 5

]
X dW (t)

Since λ1 = −200, λ = −100, α = 5 and β = 10 in (8), discrimination in the numerical
stability turns out to be same as in Example 4.
h = 0.005, (h, k) = (−1,−0.625), (−0.5,−1.25) : stable
h = 0.01, (h, k) = (−2,−0.625), (−1,−1.25) : unstable

Numerical results are in Fig. 5.

5 Conclusions and Future aspects

In this note we have extended the numerical MS-stability analysis from a scalar SDE with
one multiplicative noise into a 2-dimensional SDE system with one multiplicative noise for
the Euler-Maruyama scheme, and showed that the MS-stability region for the scalar case is
still efficient for the system case. This must suggest a way for linear stability analysis of the
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Figure 5: Example 5. Left: h = 0.005 and right: h = 0.01.

SDE system in the MS sense. Therefore we will analyze MS-stability for the matrices D and
B with complex numbers and of more dimension. And we will investigate the relationship
of the MS-stability conditions in different matrix norms, for example, between ‖ · ‖∞ and
‖ · ‖2. Also we plan to MS-stability analysis of other numerical schemes.
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