STRUCTURE OF FORMAL SOLUTIONS OF NONLINEAR
FIRST ORDER SINGULAR PARTIAL DIFFERENTIAL
EQUATIONS IN COMPLEX DOMAIN

MASATAKE MIYAKE AND AKIRA SHIRAI

ABSTRACT. We characterize the convergent or the divergent nature of a given
formal solution of nonlinear first order partial differential equations of the form

(SE) flt,z,u, 0, Oyu) =0 with  u(0,2) =0,

where f(t,z,u,7,£) is holomorphic in a neighborhood of the origin of C¢ x
C" x C, x C4 x Cg¢. We call the equation (SE) is singular in ¢ variables if
f(0,2,0,7,0) = 0 and f¢(0,2,0,7,0) = 0. Under these assumptions, we obtain
a criterion for the convergence or the divergence of a formal solution u(¢,z) =
2 la>1 Ua (@)t € Oy[[t]] whose existence is assumed a priori. Moreover, in
the case of divergent solution, we estimate the rate of divergence in term of
Gevrey order which is often called the Maillet type theorem.

1. INTRODUCTION

We begin with a simple example of nonlinear ordinary differential equations
flt,u,u) = (t—u)u'(t) —t* =0, u(0) =0,

where ¢ € C denotes the complex variable and u/(t) = du/dt. By an easy
calculation we see that there are two formal solutions u(t) = Y-°° ; u,t" € Cl[t]]
such that u; = 0 and 1. Then we can prove that the formal solution is convergent
if we take u; = 0 like a case of regular singular ordinary differential equations, but
the formal solution diverges if we take u; = 1 as u,, ~ n! like a case of irregular
singular ordinary differential equations of the first kind. Thus we understand
that the convergent property of formal solutions can not be foreseed from a given
equation, since it depends on each formal solution of a singular equation which
is defined by f(0,0,7) =0 (7 € C) in our equation.

In the previous paper [MS], we extended the notion of singular partial differen-
tial equations of first order into the case of multi-dimensional ¢ variables, and we
characterized the convergence or the divergence of a given formal solution. In this
paper, we shall extend the results in [MS] and [S3] by A. Shirai into the equa-
tions for which the degeneration occurs for restricted variables which includes
many class of linear and nonlinear singular partial differential equations studied

by many authors.
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We use the following notations in this paper: For (¢,2) = (t1,- -+ ,tg, 1, ,Tp)
€ C! x C" (d > 1,n > 0), we denote (0;,0;) = (0¢y,-++ 04y, 0nyy -+ ,0n,) the
symbol of partial differentiations. We denote by O, or C{x} the ring of germs of
holomorphic functions or the convergent power series in the variable z at x = 0.
We denote by O,[[t]] the ring of formal power series of ¢ with coefficients in O,.
In the case where n = 0, we understand O, = C, and therefore O,[[t]] = C[[t]].
Moreover, we set M,[[t]] = {u(t,z) € O.[[t]]; u(0,2) = 0}, that is,

(1.1) u(t,z) € M,[[t]] <= u(t,z) = Z|a\21u"‘(x)ta’ uq(x) € O,.

We shall study the formal solutions u(t, z) € M,[[t]] of the following nonlinear
first order partial differential equation;

(1.2) f(t,z,u, 0, Opu) =0 with w(0,2) =0.
Throughout this paper, we assume the following three assumptions:

[A1] f(t,x,u,7,€) (T = (1;) € C4 & = (&) € C") is holomorphic in a
neighborhood of the origin. Moreover, f(t,z,u,,§) is an entire function in 7
variables for any fixed ¢, x, u and £ in the definite domain.

[A2] The equation (1.2) is singular in ¢ variables in the sense that

(1.3)

f(0,2,0,7,0) =0 and gg(o,x,O,T,O)EO, (k=1,2,... ,n).

k

[A3] The equation (1.2) has a formal solution wu(t,z) € M_,[[t]].

Our purpose in this paper is to characterize the convergence or the divergence
of such a formal solution.

In order to state our results we need to prepare some notations.

Let p;(z) = 0yu(0,r) € O, (j = 1,---,d) and put p(z) = (¢;(x)). Then
by letting ¢t = 0 in the equation (1.2), we get an equation f(0,x,0,¢(x),0) = 0.
Since this is a trivial relation from the first assumption in (1.3) of [A2], we
can not obtain any information on ¢(z) from this equation. In order to obtain
informations for ¢(z), we differentiate the equation (1.2) by ¢; (i = 1,2,--- ,d)
and we get the following equations for {y;(z)} from the second assumptions in
(1.3) of [A2];

(14) gizf(t’ T U(t, [II), {atju(t’ ZL’)}, {aku(t, $)}) _
= gi(O,x, 0,p(x),0) + 22{(0,% 0, (), 0)pi(x) =0,

fori=1,2,... ,d.



We set a(z) = (0,2,0,p(x),0) for the simplicity of notation. Now we define
holomorphic functions a;;(z) (1,7 =1,2,... ,d) by

(15) 5(2) = p—(alo) + 5 (alr))ele).

Then our main result is stated as follows which is a generalization of results in
[MS] and [S3] in the case where n = 0.

Theorem 1.1. Under the assumptions [Al], [A2] and [A3], we have:

(i) (Convergent Case) Let {\;}9_, be the eigenvalues of the matriz (a:;(0))f,_;.
Then if{/\j}‘;:l satisfies the condition below which we call the Poincaré condition,
the formal solution u(t, z) € M,[[t]] is convergent in a neighborhood of the origin:

(1.6) Ch(Ap, ..., M) Z0 (Poincaré condition),

where Ch(Aq, ..., \g) denotes the convex hull of {\1,... , Aa}.

(ii) (Divergent Case) Suppose that A(z) = (ay(x))f,_, is a nilpotent matriz,
and take an integer Nwith 1 < N < d such that AN(z) = O, but A¥(z) #£ O for
j=0,...,N—1, where O denotes the null matriz. Then if f,(a(0)) # 0, the
formal solution u(t,x) € M,[[t]] diverges in general, and it belongs to the Gevrey
class of order at most 2N in t variables, which means that the formal 2N -Borel
transform of u(t,x), ¥ jus1 ta(z)t®/|a*N =1 is convergent in a neighborhood of
the origin.

The theorem will be proved by reducing the equation (1.2) to an equation
which is similar but more general than that studied by Gérard and Tahara [GT]
and many others as we shall show below.

We put v(t,z) = u(t,z) — X9, ;(x)t; (= O(|t]*)). Then by an easy calcu-
lation, we can see that v(t,z) satisfies the following nonlinear singular partial
differential equation:

(1.7) (Z aij(x)t0y, + %(a(m))) v(t, x)

ij=1
— Z bo ()t + f3(t, z,v, 0w, Oyv),
|ar|=2
where b,(z) € O, and f3(t,z,v,7,€£) is holomorphic in a neighborhood of the
origin with Taylor expansion
(1.8)
fg(t,l‘,’l],T, 6) = Z fapqr(x)taUqué'T E O${tava7—7§}7
|or|+2p+|q|+2|r|>3
where « € N, pe N, g€ N4 r e N* (N = {0,1,2,3,---}) and O,{X} denotes

the set of convergent series in all variables x and X.
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The theorem will be proved by showing the same statements for v(¢, z) which
solves the equation (1.7). In the proofs, we first examine the existence of for-
mal solution v(t,7) = 3452 Va ()t = Xpsovr(t,2) € O[[t]], with vi(t,z) of
homogeneous polynomials of degree L in ¢ variables. In the case (i) of the theo-
rem, {vy(t,x)} are uniquely determined except those L’s for which the resonance
occurs by some « with |a] = L (cf. Remark 1.2 below). Therefore, the exis-
tence assumption of a formal solution v(¢,z) and the Poincaré condition imply
the unique existence of vy (t,z) for large L, and the essential part of the proof
is how we manipulate the Poincaré condition or the nonresonance condition to
prove the convergence. It is actually done by showing a majorant estimate of the
inverse operator of P(t,x;0,) = Y%,y a;;(2)t:0;, + fu(a(z)) which appears on the
left hand side of (1.7). This enables us to construct a majorant equation (6.23)
which is solved by the classical implicit function theorem (cf. Proposition 6.1).
In the case (ii) of the theorem, we can easily examine the unique existence of the
formal solution v(¢,z) € O,[[t]] by the nilpotency condition of A(z) = (a;;(x)),
but the difficulty lies on the point that the operator P(¢,x;0d;) is not invertible
on O, but is invertible on some space of Gevrey class in ¢ variables (cf. Propo-
sition 7.1 and Remark 7.1). The norm inequality or the majorant relation for the
inverse operator P! established in Proposition 7.1 enables us to construct a ma-
jorant partial differential equation (7.13) for which the Gevrey order of solutions
is estimated by using a result in [S1] by A. Shirai.

We have to mention that the reduced equation (1.7) is a similar one studied
by Gérard and Tahara in their joint works (cf. [GT]). In their works they always
assume that the vector field 3, ; aij(:v)tiatj on the left hand side is triangular that
a;;(z) = 0if ¢ > j, and in the nonlinear term f5 they assume the existence of
variables {tiat].v} instead of d;v which are not acceptable for a reduced equation
from a general equation of singular type. Therefore, we need more careful obser-
vation on the invertibility of the vector field and a norm inequality for the inverse
operator under which we can employ the majorant method.

Remark 1.1. (About the assumption [A1l]) The assumption that the func-
tion f(t,x,u, T, &) is an entire function in 7 variable is only for the convenience.
Once we fix () = (¢;(x)) € O,% which satisfy the equations (1.4), it is sufficient
to assume that f is holomorphic in a neighborhood of (0,0, 0, ¢(0),0).

Remark 1.2. (Nonresonance condition) If f,(a(0)) satisfies the nonreso-
nance condition, that is,

(1.9) Aa+ gi(a(O)) #0, forall |af >2,

(Ao = 39_, Aja;), then the theorem does hold for the formal solution u(t, ) €

C[[t, z]] if we assume the existence of ¢(z) = (p;(z)) € O,
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Remark 1.3. (Singular equation) Our definition [A2] or (1.3) on the singular
equation corresponds to the one considered by T. Oshima [O] for linear partial
differential equations which we will explain in the next section. Especially, our
assumption that f¢, (0,2,0,7,0) =0 (k =1,2,... ,n) assures that in the reduced
equation (1.7) the vector field on the left hand side depends only on 9, (j =
1,2--- ,d). Instead of this assumption, if we assume

-fgk(07070’7-70)50 (k:1;27n)7

then we get a sigluar equation of another kind that in the reduced equation the
terms by (x)0,, with bg(0) =0 (k= 1,2,---,n) appear in the vector field.

For such equations, similar problems have been studied in a series of papers
[CT], [CL] and [CLT] by Chen, Luo and Tahara where the reduced type equa-
tions were studied under more restricted conditions than ours which they called
the singular equations of totally characteristic type. The generalization of their
results has been studied by A. Shirai. The convergent result has been obtained
in [S2] under the generalized Poincaré condition, and the Maillet type theorem
has been studied in a preparing paper [S4].

Remark 1.4. (Assumption for A(z) = (a;j(x))) In the theorem we assumed
that the matrix A(z) is regular in (i) or is nilpotent in (ii), but if we assume that
if A(0) singular but A(x) is regular for x # 0 we meet a different situation for
the formal solutions as is seen by the following simple example.

—ztou+u = f(t,z) € Oy,  f(0,2) =0,
where t,z € C. Let u(t,z) = 302 u,(x)t". Then we have
(1 —nx)uy(x) = folz), n>1,

which shows the impossibility of the existence of formal solution u(t, z) in O,[[t]].
In this equation, the unique formal solution u(t,z) € C[[t,x]] exists in Oy[x]]
which is divergent of Gevrey order 2, that is, the role of t and z is converted. For
linear equations such considerations are studied in complete form by Hibino [H]
which will be explained in the next section in a most easiest form.

2. RELATED RESULTS IN THE LINEAR EQUATIONS.

Let us consider the following linear singular partial differential equation with
holomorphic coefficients in a neighborhood of the origin y = 0 (y € C™)
(2.1)

m

=1
where 0 = (04, ... ,0n) (0; = 0/0y;).
The essential part of the work by T. Oshima [O] will be stated as follows.
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Let A := I{as,... ,a,} be the ideal of O, generated by the coefficients {a;(y)},
and assume there exists d (1 < d < m) such that A = I{ay, -+, a4} and
(aiaj(()))gjzl is invertible. Then by dividing the variables y into two groups
byti=vy; (j=1,---,d) and zy = yayr (k=1,--- ,m — d), we get an equation

m—d

d
(2.2) > ai(t,x)0u+ Y be(t, x)0p,u + b(t, z)u = g(t, x),

j=1 k=1
where the coefficients satisfy a;(0, z) = 0 with a condition that the matrix A(z) =
(8y,a;(0,x))¢,_, is invertible in a neighborhood of the origin 2 = 0, and b (0, ) =
0.

When we consider the solution u(t, z) € M,[[t]] as in the nonlinear equations,
the assumption [A2] is satisfied if and only if ¢(0,2) = 0 which is a trivial re-
striction followed from the equation. Therefore our result is applicable in this
case.

Recently, M. Hibino [H] studied the singular equation (2.1) without any other
assumption, but under the assumption of the nonresonance condition between
b(0) and the nonzero eigenvalues of the Jacobi matrix

el
which assures the unique existence of formal solution in C[[y]]. Therefore when
the Jacobi matrix D,a(0) is nilpotent, he only assumed that 5(0) # 0. Now one
of his results is stated as follows.

Dya(0) =

Theorem. ([H]) Under the above mentioned conditions, let N be the maximal
dimension of generalized eigenspaces associated with zero eigenvalues of the Jacobi
matriz Dya(0) and or N = 1/2 if there does not exist zero eigenvalues. Then,
the formal solution u(y) € Clly]] belongs to a Gevrey space G*N, which means

Saenm Ua Y2/ la?N L e O,.

Therefore, Theorem 1.1 is an extension of a part of Hibino’s results to nonlinear
equations.

3. EXAMPLE.

Example 3.1. Let (t,2) € C?. We consider the following equation:
{u — a(x)thu; — uu, = p(x)t?
(3.1) { u(0,2) =0,
where u; = OJu/0t, u, = Ou/Ox and a(z), p(x) € O, with a(0) # 0. Let

u(t,x) = 30% u,(x)t™ be a formal solution. Then wu;(x) should satisfy

{uy(z) — a(z)}us () = 0.
6



Therefore, ui(xz) = 0 or uy(x) = a(z), and after a choice of u;(x) we can see that
the formal solution is determined uniquely.
The case where uy(x) = 0. The formal solution u(t, ) satisfies

a(x)tu; = —p(2)t? + uuy — uu,, u = O(?).

This equation is a special case of the equation (1.7), and u(¢, z) is convergent by
Theorem 1.1, (i), since a(0) # 0 which corresponds to the Poincaré condition.
The case where u;(z) = a(z). Let u(t,z) = a(x)t + v(t,z) (v = O(t?)). Then
v(t, x) satisfies v(a(z) + v;) — (a(x)t + v)(d'(2)t + v,) = p(x)t?, that is,
a(z)v = (p(x) + a(z)d (2))t* — vv, + d' (2)tv + a(x)tv, + vu,.
This equation is a special case of the equation (1.7) with a;;(x) = 0 which can be
applied Theorem 1.1, (ii). Therefore, when p(x)+a(z)a’'(z) # 0, the uniquely de-

termined formal solution v(¢, z) belongs to a class of Gevrey order 2 in ¢ variable.
On the other hand, if p(z) + a(z)a’(x) = 0, we have v(t,x) = 0.

4. PREPARATIONS TO PROVE THEOREM 1.1.

In this section, we shall prepare some notations, definitions and lemmas, which
will be used in the proof of Theorem 1.1.
e D (R)={rx=(21,...,2,) €C"; |z; — 2| <R, j=1,2,...,d, 2 €
C}.
e O, (R) : the set of holomorphic functions on x € D, (R).
o Clt]p = {ur(t) = Xjoj=r Ual® ; uo € C}. (Homogeneous polynomials of
order L)
0 0Pl = {u(2) = Spopor 1)t ; uale) € O(R)}.
Definition 4.1 (s-Borel transform and Gevrey space G°%). Let R>; = {zr € R ;
x > 1}. For d dimensional real vector s = (sy, S, ... ,54) € (R>1)? and a formal
power series f(t,x) = Y qend fa(2)t* € O.[[t]], we define the s-Borel transform

B*(f)(t, x) of f(£,2) by
ot .

(1) B()(tx) = 3 fulo) g oyt

a€ENd

where s - a = Z;-lzl sjo; and (s- )l =T'(s- a+ 1) by the Gamma function.
We say that f(t,z) € G° if B5(f)(t,z) € C{t,z}, and s is called the Gevrey
order in ¢ variables.

We introduce the s-norm of up(t) = ¥, =1 uat® € Clt], by

(4.2) lulls = nf{C >0; B(ur)(t) < C(t; + - +ta)"}
al
_ I — ol
max {]ua\ 5 o) } , (ol =aq!---ay!).
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Lemma 4.1. Let f(t,x) = Y pend fa(2)t* € Og(R)[[t]] and assumes = (s, - ,s)
€ (Rx1)?. For a regular matriz Q(z) = (Qij(x)) € GL(d,Oy(R)), the function
g(1,z) = f(1Q(z),x) belongs to G° in T variables if and only if f(t,x) belongs
to G° in t variables.

Proof. We only prove the sufficient condition, since the necessary condition
follows from it. By the definition, f(t,x) = X fo(2)t* € G° in ¢ variables if and
only if there exist positive constants A and B such that

o (sla])!
(4.3) xé%%)\fa( z)| < AB all for all o € N%.

We recall g(1,2) = X fo(z)(7Q(2))*. For any fixed x € Dy(R), (7Q(x))* is
estimated by

- i ()

1,j z€Do(R)

< (m ma {]Qy(s >\})'a (r 4o+ )bl

We set C' = max; ; maxyep,(r) | Qi ()| Then by (4.3) we have

|| ( ’Oé|) (7-1 4+ -4 Td)‘a|7 for all z < DO(R)

fa(@)(rQ(2))" < A(BC) al!

This implies

s D rO(z)* |a\(3\04’)! @ ! -8
B @) < ABOMTIE 3 G

= A(BC)°l (ry +--- + 1)l for all x € Dy(R),
Therefore, for all € Dy(R) we have
Bi(g)(t,2) < A Y (BO)l(r + -+ 1)l € O,

a€ENd

This proves that g(7,z) € G® in 7 variables. U

5. PROOF OF THEOREM 1.1, (i).

We put v(t,z) = u(t,z) — X9, g;(x)t; € M,[[t]] which satisfies v(t,z) =
O(|t|?). Then, as stated in Introduction, it is easily examined that v(¢, x) satisfies
the following singular equation:

(5.1)

(i: a;j(2)t:i0y; + c(x ) = > ba(x)t* + f3(t,z,v, 0w, Oyv),

ij=1 Jor|=2
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with a;;(z), ¢(x), ba(z) € O, Here we remark that (a;;(0))¢,_; is a regular ma-
trix with eigenvalues {);}9_, which satisfy the Poincaré condition (1.6), c(z) =
fu(a(x)) and f3(t,z,v,7,€) is holomorphic in a neighborhood of the origin with
Taylor expansion
(52) fg(t,ﬂf,U,T, 5) = Z fapqr(x)taUqugra
|al+2p+|gl+2[r[>3

where o € N4, p € N, ¢ € N? and r € N".

By the Poincaré condition (1.6), there exists a positive integer K > 2 such
that

(5.3)

d
ijl)‘j%’ + C(O)’ >Colal, |al > K

holds by some positive constant Cy > 0. We take and fix such K.

Once again we set w(t,z) = v(t,x) — 2@;12 ua(7)t* (= O(|t]¥)) as a new
unknown function. Then w(t, z) satisfies a singular equation of the following
form:

(5.4)

d
(Z aij(x)t;0, + c(x)) w = Z do ()t + fra1(t, 2, w, yw, Opw),
ij=1 lo|=K
where d,(z) € O, and fxi1(t,z,u,7,£) is holomorphic in a neighborhood of the
origin with Taylor expansion
(55) fK+1(t7x7u77—7 g) = Z foapqr(x)tauqugr'
|a|+Kp+(K-1)|q|+K|r|>K+1

Therefore, the proof of Theorem 1.1, (i), is reduced to prove the following

Theorem:

Theorem 5.1. Under the condition (5.3), the equation (5.4) with w(t,x) =
O(|t|%) has a unique formal solution which converges in a neighborhood of the
origin.

We shall give two proofs of this Theorem, since both are seemed interesting.
The first one will be given in the next section which is based on the view point
as an evolution of (5.4) in ¢ variables. The second one will be given in Appendix
(Section 8) where all the variable ¢ and x are considered to play the same role in
a sense.

6. PROOF OF THEOREM 5.1

By a linear change of ¢ variables which brings (a;;(0)) to its Jordan canonical
form, the equation (5.4) is reduced to the following one:
(6.1) A+ A+ Aw(t,z) = Z Cal(T)t* + graa (t, T, w, Oyw, Opw),

lal=K
9



with w(t, z) = O(|t|*), where

d d—1
(62) A= Z /\jtjﬁt]. + C(O), A= Z 5jtj+18tj,
7j=1 7j=1

A= Ax) = Z_ @ij(2)t:0; +b(z), (i;(0) = 0,6(0) = 0),

and g1 is holomorphic in a neighborhood of the origin with the same Taylor
expansion with fr ;.
Remark 6.1. In the part A, it is normally considered that 6; = 0 or 1. However,
we can take {J,} are as small as we want. Indeed, if we take a change of variables
by t; = €’t;, then d; is replaced by &6;.

For the proof our theorem, the following proposition plays an essential role to
employ the majorant method.

Proposition 6.1. Let us consider the linear operator P = A+ A + A.

(i) For all L > K, the mapping P : Oy(R)[t], — Oo(R)[t]L is invertible for
sufficiently small R > 0.

(i) For u(t,z) € Oo(R)[t]L, if a majorant relation u(t,z) < W(z)(ty + -+ +
tq)¥ does hold by a function W (x) with non negative Taylor coefficients, then
there exists a positive constant F' > 0 independent of L such that

(6.3) P lut,r) < 2]{ — XW(SU)(t1 o tg) "
= (Tor) W@+ 1)

where T'=11,...+tgand X =x1+ -+ x,.
Remark 6.2. By the above lemma, a majorant operator of P~! on the space
of homogeneous polynomials in ¢ variables with holomorphic coefficients in x
variables is given by

F F
R-X SR-x

The precise definition of majorant operator will be given later.

(6.4) Pt < (Tor)™

Proof of Proposition 6.1, (i). First we prove the invertibility of the operator
P=A+A+Aon Clt]; (L> K) for any fixed x € Dy(R) which is considered
as a parameter.

Let us, first, consider a linear mapping 7' = (To4)ja=g=L : Clt]r — C[t]L
defined by

S st Y {ZTaM}w.
|Bl=L lal=L \ B
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We take the norm || - |1 on Clt], with 1 = (1,---,1) defined by (4.2), that is,
for u(t) = Xp=r upt’ € C[t]z, |lully = inf{C > 0; u(t) < C(ty + ---ta)*} =
sup {lusl 37151}

Then the operator norm ||T’||; of T is given by

|

(6.5) Il = max 3 [Tosl
T '

We omit the proof, since it is elementary.

We return to the proof of the lemma. We consider the mapping A = Z;l:l A0k,
+¢(0) : C[t], — CJt]r (L > K). Since the matrix representation 7" of A is a
diagonal matrix with 7,,, = ?:1 Ajo; +¢(0) # 0 (L > K) which implies the
invertibility of A, and by the condition (5.3) we get the following operator norm
of A71

(6.6) A7 ]2 < (CoL) 7,

where Cp > 0 is the constant in (5.3).

Next, we consider the estimate of the operator norms of A and A on CJt],
for any fixed x € Dy(R). By computing the norms of Au(t) and Au(t) for
u(t) € C[t], their operator norms are estimated as follows:

(©.7) Al <2 x e, [5]
and
d
(6.8) |A]ls < Lxmax ) sup |og(z)]+ sup [b(z)],
? j=12€Do(Ro) z€Do(Ro)

By Remark 6.1, we may assume the constants ¢; in A are arbitrary small as we
want, and we recall that a;;(x) and b(x) vanish at x = 0. Therefore, by taking
R > 0 sufficiently small we may assume that

(69) HA + AHl < CoL, for all x € Do(R)

Therefore, for all z € Dy(R) we have ||[A71(A + A)||; < 1 on C[t], (L > K)
which proves the invertibility of P = A+ A+ A on Clt|, (L > K).

Now the holomorphic dependency of P~! on z € Dy(R) follows immediately.
In fact, we first notice that P~! is given by the Neumann series

Pl=A+A+A4)7"={>" (-AA+A)"}A

Here we note that the matrix representation of the operator A~ (A + A) (A =
A(z)) depends holomorphically on z € Dy(R) and is constructive uniformly on
the same domain. Therefore the convergence of the Neumann series is uniform

on Dy(R), which completes the proof. O
11
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For the proof of the majorant relation (6.3) in Proposition 6.1, (ii), we introduce
a notion of majorant operator.
Definition 6.1 (Majorant Operator). Let a(z) = (aa3(7))jaj=ip=z and A(x)
= (Aap(®))jaj=|p)=r be linear operators on Oy(R)[t],. We say that A(z) is a
majorant operator of a(x), if ang(x) < Anp(x) hold for all |o| = [5] = L. If A(x
is a majorant operator of a(z), we write this relation by a(x) < A(x).
Remark 6.3. The following relations are obviously hold:
o If a(z) < A(z) and b(z) < B(z), then a(x)b(z) < A(x)B(z).
o Let a(x) < A(z). If two formal power series u(t,z) and U(t, z) satisfy
u(t,z) < U(t,z), then a(z)u(t,z) < A(x)U(t, ).
Proof of Proposition 6.1, (i) We set Ay = Z?:1 t;0;;. By the condition (5.3)
and the above definition, we have A™! < (CyAg)~!. For a formal power series
f(x) =X fax® € C[[z]], we define |f|(z) by |f|(x) := X |fa|z®. By using this

notation, we have a majorant relation
A+ 4] > A+ A,

where |A| := 3971 |6;]t;410,, and [A] := ¢ o] (2)t:0,, + [b] ().
Now we take R'(< R) such that

(6.10) 1(Colo) M (A + |AD|l1 < 1, for all z € Do(R').
By this inequality, a majorant operator of P~! is given by
Pt o= A+A+A) = {Z(—A—l(A + A))”} A!
n=0

< {fj((ovo)‘lﬂm ‘ |A|>>"} (Coto) ™

n=0

= {7 —(Colo) " (IA[+]AD}H(Coho) ™
= {(Coto) — (IA[+]AD} = Q7
where I denotes the identity operator.

Let a(z) = (aas(7))ja=ig=2 and C(z) = (Cap())ja=ig=L (Cap(x) > 0) be
the matrix representations of the linear operators P~! and {I — (CoAg)(|A| +
|A])} !, respectively. Then the matrix representation A(z) = (Aag(2))|aj=8=L
of the linear operator Q" is given by (A.5(z)) = (CoL) ™! X (Cup(x)). Therefore,
we have the majorant relation a.g(r) < (CoL) 'Cug(z) for all |a| = |3| = L.

Now we assume a majorant relation

u(t,z) = > ua(2)t* < W)t + - +ta)*,  (W(x) > 0),
|a|=L

which means u,(xz) < W(x)L!/a! for all |a| = L.
12



We put P~'u(t, z) = 34—z Va(2)t*. Since the matrix representation of P~
is a(x) = (aas(®))|a|=|g=L, We have

va(2) = D aap(x)us(x) < C Z Cap(x ﬁ"
|8|=L 0 18l=L
that is,
11 o! C
(6.11) Ua(ﬁc)L! << Col wZL as(T 5,

In order to prove (6.3), it is sufficient to prove the existence of a positive constant
F and a constant R"(< R') independent of L such that

F

(6.12) S Cosl) s < ) ol =L
1B|=L 5' =X
where X = x1 + -+ + x,,. In fact, if once we prove (6.12), then we have
_ o al L!
Plu(t,z) = D va(a)t®= D valz >L' a't
|a|=L |a|=L
W(x) ( L!
« x VO (v owm ) L,
amr Gl \j42n sl
W(x) F L
< CoL R_X(t1+---+td) ,

which we want to prove. Thus the proof is reduced to establish (6.12).

Proof of (6.12). It is sufficient to prove the existence of R”(< R’) such that the
following estimate does hold by a positive constant C > () independent of L.

: — <
(6.13) max max IL;L!CQB 5' C.

In fact, by (6.13), fo(z) = >X5Casp(x)a!/B! is holomorphic on Dy(R") and
|fa(z)] < C. Then by Cauchy’s integral formula we can prove the following
majorant relations.

(6.14) falz) <

by X =z + -+ 2,
Now let us prove (6.13). We use the following notations.
2]l = (lzal, - Jon]) € (R20)", [IR]] = (R, R) € (Rx0)"
Since Cupg(x) > 0, we have
max |Cop(x)| < max  Cog(ll]]) < Cap([[B]])-

2€Dy(R) €Dy (R)
13
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Now we take a positive constant R” > 0 such that
1(Cofo) ™ (IA] + [AD o=yl < 1,
where |R"|| = (R",--- ,R") € (Rxo)" and
(Al + [ADla=rr = 1AL+ D lag | (1R7Dt;0, + PIIR"]) = Clt] — Clt]z,

i?j

the restriction mapping at z = || R”|.
Then for all || = L we have

ol

Cap(x)l; < D Cagl HR"lD
181= = <<DuCi) g BI=L
< max Y Cogl HR"||)
=L 5=
-1

= |[{r = €oa0) (181 + 1ADLemin} |

< ! < 00
1= [(Colo) M (IA] + [AD a=yirr ]2 ’

where we used the norm equality (6.5) at the place of the equality. O

Proof of Theorem 5.1. We take a small positive constant R > 0 such that the
functions in the equation are holomorphic on Dy(R) and that Proposition 6.1 does
hold. By this choice of R we easily see that the formal solution w(t,z) € M,[[t]]
with w(t,z) = O([t|¥) of the equation (6.1) exists uniquely by the invertibil-
ity of P on every Og(R)[t] (L > K). Indeed, the formal solution w(t,z) =
Yrsxwi(t,x) (wp(t,z) € Op(R)[t]L) are determined inductively on L. There-
fore, we have only to prove the convergence of this formal solution w(t, x).

Let U(t,x) = Pw(t,x) be a new unknown function. Then U(t, z) satisfies the
following equation by (6.1):

(6.15)
= > Gt + g (t,x, P7'U,0,P7'U,0,P7'U),

|la|=K

Ut x) = O(|t]").

In order to prove the convergence of formal solution U(¢, z), we prepare majo-
rant functions (which are convergent) as follows.

A
2 Gt < T (T=titetty X =ait oo ta),
la|=K

14



gK—i-l(t? x,u,T, 5)
Gapqr

< (B — X )l +pHartir

loa+Kp+(K—1)|g|+K|r|>K+1

= Grgn(T, X, u,71,8).

Tla\uqu£T

We recall the majorant relations (6.3) in Proposition 6.1 and (6.4), and notice an
elementary majorant relation of operators that 0y, (T9r)~" < 1/T. We consider
the following equation:

(6.16)
o xR+ G (T =W

F W ., F "
{R—XT}jzl’{a””’“(mT) R—XW}k:1>’

W(T, X) = O(T"),

W(T, X) =

where F' is the same positive constant in (6.3). We note that 0,, = Jx in the
above equation.

By this construction of the equation, we easily see that the formal solution
W(T,X) € Ox|[[T]] (which is uniquely determined) is a majorant function of
U(t,x), thatis, W(t1+- - -+tq, z1+- - -+x,) > U(t, z) holds. Therefore, it is sufhi-
cient to prove the convergence of W (T, X). We put W(T, X) = Y1, Wi(X)T*
and by substituting this into (6.16), we obtain the following recursion formulas:

A
6.17 We(X) = 2
(6.17) “ ) = e
and for L > K + 1,
(618) WL(X) = Z Gapqr Z/ ﬁ LWL (X)
V(ep,qr)>K+1 (R — X)leltptlaltri o R—XT
d 4 F no T 1 F
where
(6.19) V(e,p,q,r) = o] + Kp+ (K — 1)|q| + K|r|,

and summation 3’ is taken over

n Tk

(6.20) |a‘+§p:Ll+§d:§j:(Mjl_1)+ZZNkl = L.
=1

j=11=1 k=11=1

By these recursion formulas, we can prove the following lemma:
15



Lemma 6.1. The coefficients {Wr(X)}r>k are given by

(6.21) Wi(X) = 3 (;YL)Q

i=K

by some Wp; > 0.

Proof of Lemma 6.1. The expression (6.21) can be proved inductively on L by
estimating the powers of 1/(R — X). The case L = K is trivial, and consider the
case L > K. The lower bound is easy to prove, so we omit it. The upper bound
is estimated by

p
i < lal+p+lg +|r]+ D (10L, — 9K + 1)
=1
d 49 n Tk

+> 3 (10My; — 9K + 1) + > > (10N — 9K +2)

j=11=1 k=11=1

10L — 9{la| + Kp+ (K — 1)|q| + K|r|} + 2p + 3|q| + 3]r|

< 10L = 9{Ja| + Kp+ (K — 1)|q| + K|r[}
+e g tlal + Kp + (K = Dlg| + K|r[}
3
= 10L = (9= =" ) {lal + Kp+ (K = Dlgl + KIr)
3
< 100L—(9— —— ) (K+1
< (9- =) K+ 1)
3(K+1)
= 10L - 9K —— -9
()
< 10L —9K.
This proves the lemma. U

By the representation (6.21), we have the following majorant relation:

F 10L79Kj _|_ 1 FWL
6.22) O, (Tor)™* W(T,X) = B
( ) k( T) R o X ( ) ) LEZ;{ ];( L (R _ X)]+2
10F

As the final step we construct the following functional equation which may be
called a majorant (functional) equation to the equation (6.16):

A K
(6.23) V(T,X)—WT
P Fove 10F !
T,X e (R—X)?
+GK+1< ’ 7R—XV’{R—XT}jzl’{(R_X)QV}kﬂ)’

16



with V(T, X) = O(T*). The existence of unique formal solution V (T, X) which
is convergent follows from the classical implicit function theorem, and the above
construction of the equation shows that W (7T, X) <« V(T, X) which implies the
convergence of U(t, x). O

7. PROOF OF THEOREM 1.1, (ii).

We recall the equation we consider is given by
d
(7.1) (Ziﬁjzlaij(x)tiatj + c(m))) v(t, x)
= > ba(x)t* + f3(t,z,v, 0w, O,v),

|af=2

where ¢(z) = fu(a(z)) with ¢(0) # 0 and A(z) = (a;;(2))% is a nilpotent matrix
such that A(z)¥ = O but A(z)? 20 for 0<j <N -1 (1< N <d).

We remark that by the assumption that ¢(0) # 0, we may assume c¢(z) = 1 in
the above equation by multiplying c¢(x)~! to the equation which does not change
the assumption for A(z).

Let assume the functions in the equation are holomorphic in « on Dy(R) by an
R > 0. Then we can easily examine the unique existence of the formal solution
v(t,T) = Xjaz2 Va2t (va(r) € O(R)). Indeed, under our assumptions the

mapping
d

> aij()ti0, +1: O(R)[t], — O(R)[t]L,

ij=1
is invertible by the fact that the matrix representation of the part of vector field
which we set by A(x) is nilpotent again. Therefore the formal solution is uniquely
determined inductively on L > 2 for vy (t, ) = 3|42 va(2)t* € O(R)[t]L.

Our proof is thus reduced only to estimate the Gevrey order in t variables
of the formal solution. Here we recall Lemma 4.1 which guarantees to make a
change of variables ¢ by (71, -+ ,74) = (t1, -+ ,ta)Q(x) by Q(z) € GL(d, O(R)).

By the assumption of nilpotency for A(x), there exists an invertible matrix
Q(z) = (Qi;(z)) over the field of meromorphic functions in a neighborhood of
the origin such that

(7.2)
Q(x) Y(a;j(2))Q(z) = diag(By, -+, Br,Oy) : Jordan canonical form,

where diag(- - - ) denotes the diagonal matrix with the diagonal blocks (- - - ). Here,
B;"" = O (n; > 1) and Oy is the zero matrix block of size J with ny+- - -+n;+J =
d, and by the assumption we have max{nq,... ,n;} = N.

Now we make a “formal” change of variables by

(11, y71a) = (t1, ... ,t)Q(z), ype=x, (k=1,---,n).
17



Here the “formal” means that Q(z) may admit meromorphic singular point at
the origin, and it is an actual holomorphic change at the points if Q)(x) is holo-
morphically invertible at the origin.

Since 0, = Z?Zl Qij(2)0;, and 0,, = Z?thi{8$inj(x)}8Tj + 0y, , in the re-
duced equation by this change of variables the vector field is changed by the
Jordan canonical form (7.2), and the nonlinear term f3 is changed to g3 which
satisfies the same condition.

According to the form of (7.2), we make a further change of variables, y — x €
C" (as before), and make a decomposition 7 = (y, z) € C? by

(y,2) = (y' ...,y 2), ¥ =Wits- - ,¥in,) €EC™, z=(21,...,25) €C’
Now the equation (7.1) is reduced to the following equation:
(7.3)
{ Pu(y, z,2) = Yot isi=2 Cas(@)y*2" + g3(y, 2,2, v,0yv, 0.0, 9,v),

vy, z,x) = O((lyl + |21)*),

where
I n;—1
(74) P = Z Z ) yi,jH@yi,]. +1, 6€C,
i=1 j=1
(75) 93(y727x71]7<77]7§)
- Z gaﬁpqlqzr(5’7)yazﬁvpcql77qgfry

|| +|8|4+2p+|qt |42 +2[r[>3

where ¢t € Nut-+n1 g2 ¢ N/,
We remark that the constant § is assumed as small as we want by Remark 6.1.

Here we have to notice that in the reduced equation (7.3) the origin x = 0 may
be a singular point. Therefore, the proof of the theorem is divided into two steps.
In the first step, we prove the theorem under the assumption of holomorphy at
x = 0. In the second step, we remove such restriction by using the maximum
principle for the holomorphic functions from the fact that the equation has a
unique formal solution v(t,z) € O(R)[[t]] which was mentioned above.

7.1. Holomorphic case. The proof below follows the arguments in [S1] and
[S3] by Shirai. Especially, in [S3], the case of absence of the variables = was
studied, and some of proofs in the below will be omitted or shortened since they
are essentially the same.

We assume the equation (7.3) is holomprhic in a neighborhood of the origin
and we shall prove that the formal solution v(y, z, ) of (7.3) belongs to G2V in

(y,z) variables with N = max{n; ; ¢ = 1,2,--- ,I}. In order to do that it is
18



sufficient to prove v(y, z, z) belongs to some Gevrey space G* in (y, z) variables
with s = (51, S2,- -+ , sq) such that [|s| = max{s;} <2N.
Let us prepare the following lemma:

Proposition 7.1. (i) For all L > 2, there exists a radius R > 0 independent of
L such that the mapping P : Oy(R)[y, 2] — Oo(R)[y, 2|1 is invertible.
(i) Lets = (s1,---,s7,1;) € N, where

Si:<1727".7ni)ENni7 1«]:(17“.7]‘)€NJ7

as a manner corresponding to the decomposition T = (y, z). Forky = (k,--- k) €
N? we define s + kg (ors+k, for shOft) by the summation componentwisely.

For f(y,z,x) € OO<R)[y7Z]L; Zf Berk:(f)(y’z’l.) < WL(X)TL (T = |y| +
|z|, X = |z|), then there exists a positive constant C' > 0 independent of L such
that

(7.6) B¥H(P )y, 2, x) < C Wi(X)T".

Proof. (i) is obvious since the vector field is nilpotent as we mentioned before.
(ii) For an operator @ on Clt]z, ||@Q|lz,; denotes the operator norm equipped
with the norm || - ||z, on Clt].. Then it is easily proved that

||yi,j+1ayi,j ||§+k <1

for all ¢ and j. Therefore by taking |d| so small that (d — J — I)|§] < 1 we get
the majorant estimate (7.6) by C' = 1/(1 — (d — J — I)|4]). O
Remark 7.1. This lemma shows the bijectivity of the mapping P : G5+% — G5tk
for all £ > 0. Indeed, let f(y,z,2) = X5 fr(y, z,2) € G5tF with fi(y, z,2) €
Oo(R)[y, z]1. Since B f(y, 2, z) = Yr>1 Bk f(y, 2, 2) € Oy.»z, there exist
positive constants M and R’ such that

M M -
(= X/R)( - T/R) ~ 1= X/ 2y B

By, 2, 1) <

L>1
where T" and X are given as above. This means that
= MTE
B [y, z, 1) < :
fulv:220) < Bra )
and for the formal inverse P~!f we have
~ CM
Bs+k(P_1f)<y7 <, CL’) < € Oy,z,m-

(1-X/R(1-T/R")
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We put U(y, z,x) = Pu(y, z,x) as a new unknown function. Then, U(y, z, x)
satisfies the following equation:

(7.7)
Uy, z,2) = Xjap+ig)=2 Cap(2)y* 2"
+93(y, z,x, P~'U,0,P~'U,8.P~'U,0,P~'U),

Uy, z,x) = O((ly + [21)?)-
Now we apply the s-Borel transform to the equation (7.7), we obtain
g (la] + [3])!
(78) BS(U)(y’va) = Ca (x)%yazﬁ
|a_|_§|g:|2 ’ (S ) (Oz,ﬁ))'
+B{gs(y, z, @, P~U,0,P~'U,0.P~U,8,P~'U)}.
In order to construct a majorant equation for (7.8), we prepare the following
lemma:
Lemma 7.1. (i) The Borel transform of a product (uv)(y, z, x) is majorized by
(7.9) B (uv)(y, z,2) < NB(|ul)(y, z,2) x B(|v|)(y, 2, ©),
where N = max{ni,... ,nr}.
(i) If B3 (u)(y,z,x) < W(T,X) (T = |y| + |2|, X = |z|), then there exists a
positive constant C7 > 0 independent of y, z and x such that the Borel transforms
of Oy, ;u, Oz, u and Oy, u are majorized by

(7.10) B8y, u)(y, z,x) < C107(Tdr Y~ "W (T, X),
(7.11) B(0.,u)(y, 2, x) < C10rW (T, X),
(7.12) B3(8,,u)(y, 2, ) < C1oxW (T, X),
Proof. The proofs are the same with those of Lemma 2 in [S3], so we omit it.
O
Now we consider the following equation which is a majorant equation of (7.8):
(laf + 18D e
(7.13) W(T, X) = 1Cap|(X) ——55 | T
|a|_§|2 ’ (S ) (057 ﬁ))‘
n; I
+‘93| <T7 Xa ClWa {{C/aT(TaT)j_lw} . } )
=1} =1

{C'OrWY_, {COxWY,),

with W (T, X) = O(T?) where T = (T,... ,T) € C%, X = (X,... ,X) € C" and
C' = C,CN.
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Now by the construction of the equation (7.13), we easily see that the formal
solution W(T, X) € Ox|[[T]] is a majorant function of B%(U)(y, z,x) of (7.8) by
replacing ' =y11+ -+ Yrn, + 21+ +zyand X =21 + -+ + 2.

Here we recall the result in [S1] by Shirai in a special form attached to our
case. Let us consider the following equation.

VT, X) = g(X)T5 + hyer (T, X, V,{DLV}"_,, DxV)

=1

with V = O(T¥), where ¢(X) and hg (T, X,V,7,€) (1 € CP,& € C) are
holomorphic in a neighborhood of the origin and

p .
h’K+1 (T7 X? V7 T, 5) - Z,hab{c(j)}d(X)Tavb H ch(]) gd’
j=1

and the summation 3 is taken over

Via, b {c(i)},d) = a+ Kb+ (K = j)e(f) + Kd = K +1,

J

the left hand side means the order of zeros in T of each monomial by substituting
V(t,z) = O(TX).

Then the formal solution V(T, X) € Ox|[t]] which exists uniquely belongs to
G°t!in T variable with

[ Alabdeia
o R R ) 20

by A(a,b,{c(7)},d) (€ {0,1,2,--- ,p}) which denotes the maximal order of dif-
ferentiations which appears in the monomial. (This is a special case of Theorem

1in [S1].)

We return to the equation (7.13). In this case, K =2, V(a,b,{c(j)},d) — K >
1 and A(a,b,{c(j)},d) < max{n; ; i = 1,2,---,1} = N which shows that
W (T, X) € GN*!in T variable. Therefore B5(U) (U = Pv) belongs to the Gevrey
space GNT in 7 variables 7(= (y, z)) variables, which implies U = Pv € G5 in
7 variables, and hence v(7,z) = P7'U € G5tV in 7 variables by Proposition 7.1
and Remark 7.1. Then by Lemma 4.1, we have v(t,z) € G*V in ¢ variables, since
each component of S is estimated by N = max{n;;i=1,2,--- ,I}. d

7.2. Meromorphic case. In this subsection, we shall prove the theorem in the
case where Q(x) or Q(x)~! is singular at the origin by the idea used in [M] by
Miyake where the inverse theorem of Cauchy-Kowalevski’s theorem for general
systems was studied. The theorem is an immediate result from the following

lemma:
21



Lemma 7.2. Assume that Q(z) or Q(x)~! is singular at the origin. We may
assume that Q(x) and Q(z)~" are holomorphic on [[}_ {Rj—¢ < |z;| < Rj+e} C
Dy(R) by suitable taking positive constants R; > 0 and ¢ > 0 (j = 1,2,--- ,n)
such that 0 < R; —e < Rj+¢e < R. Then the formal solution v(t,z) (T = (y, 2))
of (7.3) belongs to G*N in T wvariables on [Tj_ {|z;| < R;}.

Proof. We, first, notice that we already know there exists a unique formal solution
V(T,7) = Yjajz2 Va ()t € OL[t]], where we may assume that v, (z) € Op(R) by
a small R > 0 for all a. We may consider that this R is the one in the statement
of the lemma.

Let T = (21, ,%n) € [[jo{|7;| = R;} be arbitrary fixed. Then by the
assumption, Q(x) is holomorphically invertible on € neighborhood of Z. By the
result in the previous subsection, we know that the formal solution v(7, z) belongs
to G2V in T variables in a neighborhood of Z. Therefore there exists a positive
constant 7(Z) (which may depend on ¥) such that the following Gevrey estimates
hold by positive constants A~ and B which may depend on 7.

(7.14) max _ |va(z)| < Az BiPH{(2N — 1)|al}!,

|z~ <r(z)

for all a € N¢ with |a| > 2.

Since the polycircle C(R) = [I{|z;| = R;} (R = (R1,--- , Rq)) is compact, we
can take finite number of {Z(®}; on the polycircle so that the union of r(zZ*))
neighborhood of Z(*)’s covers the polycircle C'(R). Now by taking A the maximum
of A~w’s and B the maximum of B;wx)’s, we get the following Gevrey estimates
on the polycircle C'(R),

(7.15) max |v(z)| < ABH{2N —1)|a|},
zeC(R)
for all & € N¢ with || > 2. Since v, (z) are all holomorphic on Dy(R), by the

maximum principle we get the same Gevrey estimation on the polydisc [];{|z;| <
R;}, which proves the lemma. O

8. APPENDIX: ALTERNATIVE PROOF OF THEOREM 5.1.

In this section, we give an alternative proof of Theorem 5.1. The proof given
in Section 6 is based on the view point as evolution equations in ¢ variables, and
that given in this Appendix is based on the view point that the role of variables

t and x are equivalent in a sense.
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By a linear change of ¢ variables which brings (a;;(0)) to its Jordan canonical
form, the equation (5.4) is reduced to the following equation:

d

(8.1) A+ Aw(t,z) = Y ay(@)to,w+n@)w+ > C(x)t*

’i,jil ‘al:K

+9K+1(t7 €, w, atw7 azw)7

where
d d—1
(82) A= Z )\jtjatj + C(O), A= Z (5jtj+18tj,
j=1 j=1

and a;;(z) (= O(|z])), n(x) (= O(|z|)) are holomorphic in a neighborhood of the
origin, and g is holomorphic in a neighborhood of the origin with a similar
Taylor expansion with (5.5).

Let C[t]p[z]y be a set of homogeneous polynomials of degree L in t and of
degree M in x, that is,

Clt]plz]m = {uLM(t,x) = ZM:L’W':Mua/gto‘xﬁ P Uag € C} :
We define a set of homogeneous polynomials of degree L in ¢ by
Clt]o[l2]] = {us(t, ) = > sotnar(t@) 3 upa(t,x) € Clt]olz]u} -

By substituting w(t,z) = Y ;> wi(t, z) (wr(t,z) € Ct].[[z]]) into (8.1), we
get the following recursion formula:
d

(A4 A)wg(t,z) = Y ay(2)t0,wi (b, z) + n(@)wg () + Y Cala)t?,
1,j=1 |a|=K
and for L > K + 1,
d
A+ DNw(t,z) = > oy(@)ti0,wr(t,z) + n(x)wr(t, )
inj=1

+H(t, e, {wp y<r, {Owr }p<n, {0cwr b <),

where Hj denotes a homogeneous polynomial of degree L in t.
Next we substitute wr(t,2) = Yysowrnm(t, z) (weam(t,z) € Clt|p[z]ar) into
the above recursion formulas, we have

(83) (A + A)’U)LM(t, JZ) = HLM(t, X, {’U)L/M/(t, x)}(L’,M’)<(L,M))7

where Hj ;s denotes a homogeneous polynomial of degree L in ¢ and of degree M
in z, and (L', M") < (L, M) denotes the lexicographic order.
This recursion formula (8.3) has a unique solution wy(t, z) by the following

Lemma:
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Lemma 8.1. Let P = A+ A. Then we have:

(i) The mapping P : Clt]p[z]yy — Clt]p[z]a is invertible for all L > K and
M > 0.

(ii) If a majorant relation upy(t,x) < Wiy X TEXM (T =t + -+ t4, X =
x1+---+x,) holds, then there exists a positive constant Cy independent of L and
M such that
(8.4)

C
P lupy(t,z) < leLM x TEXM = Cy Wy x (Top) ' T XM
Proof. (i) The invertibility of A follows by the modified Poincaré condition (5.3).
Since the matrix representation of A~! is diagonal, A~!'A is nilpotent again.

These observations imply the invertibility of P = A + A.
(ii) We introduce a norm of uy (¢, ) € C[t|p[z]am by

(8.5) llurarl| = inf{C > 0; upy(t,z) < CTEXM}.

Then by the condition (5.3), the operator norm of the inverse A™! is estimated
by [|A7Y| < 1/(CoL) where Cj is the constant in (5.3). Furthermore, we can

estimate the operator norm of A by ||Al] < max{|d|, - ,|dq_1|}L. Here we
recall that we may assume that |0;| are as small as we want. Therefore we may
assume that [[ATTA|| < (Co) ' max{|dy], -+ ,|04-1|} < 1/2. By this choice of
{4;}, the operator norm of P~ = (I — A~'A)~'A~! is estimated by
At 2
1—||ATTA]| =~ CoL
Therefore, it is enough to take C; = 2/Cj. O

Next, we shall prove the convergence of the formal solution w(t,x). We put
U(t,x) = Pw(t,x) as a new unknown function. Then U (¢, z) satisfies the follow-
ing equation:

(8.6) {I — ijzlaij(x)ti@tjp—l B 77(91:)]31} U
= > (@)t + gria(t,w, PU,0,P7'U,0,P7'U).
o=k

By Lemma 8.1, (ii), if a majorant relation U(t,z) < W (T, X) holds, then we
have the following majorant relations:
d - d
° Zi’jleéij(iﬁ)tiatjP U<« ¢ (Zm.l’()éij](X)) W,
o n(z)P7IU < Cifnl (X)W,
* Z|a\:KCa<x>ta < (Z|QK|<Q|(X>> TK7

[} gK+1(t,I',P_1U, 3tP_1U, axP_lU)
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< |gr1|(T, X, C1W, CiW/T, C10x (T0r) "' W),
where T = (T, T,... ,T) € C? and X = (X, X,... ,X) € C". Here |f|(z) and
lgrcs1|(t, z,u, 7,&,m) are defined as follows:
For a formal power series f(x) =3 fox®, we define |f|(z) = X | fa|z®, and for
9rc+1(t 2, U, T,8) =3 Gapgr () t*uPTIE", we define
|9K+1|(t7 T, u,T, 5 Z |gapqr tauquf

Let us consider the following equation which is a majorant equation for the
equation (8.6):

(8.7)
W(T, X) = Z(X)TK

oW
Gren (T, X, W, {1T} , {Clax(TaT)‘1W}> ,
W(T, X) = O(T¥),
where Z(X) = P(X) ¥jq=k [Cal(X) (P(X) is defined below), and
GK+1(Ta X7 u, T, f) = P(X)|9K+1|(Ta Xa u, T, 5)

with
PX) = (1= X JalX) - Cilnl(X)) € CX).
By this construction of the equatlon, it is easily examined that U(t,z) <
W(T,X).
We take majorant functions of Z(X) and Gk, by
A
8.8 Z(X —— = QX
(59 (%) < e = AX).
(89) GK+1(T7 X,U,T, é-)
GQP(]T lal, p—qer
< 2 (R = Xl L T8

||+ Kp+(K—1)|q|+K|r|>K+1
= R 1 (T, X, u,1,§).

Then we consider the following equation.
(8.10)

V(T, X) =Q(X)T"

R <T, X,CLV., {C%V} , {Clax(TaT)‘1V}> ,

V(T, X) = O(TK).

By this construction of the majorant equation (8.10), we have

Ult,z) < W(T, X) < V(T, X).
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We substitute V(T,X) = Y5k Vo(X)T* into (8.10). Then we obtain the
following recurrent formulas:
A

(8.11) Vi (X) = m

= Q(X),
and for L > K +1

Gapqrcfﬂfﬂﬂﬂ
(R— X)Ia\+p+|q|+|r|

(812)  Vi(X) = >

|o|+Kp+(K—-1)|g|+K|r|[>K+1

lq| Ir|

5 H Vi (36) T Vi () T 10 ().

=1
where the summation 3 is taken over

lal

I
(8.13) Ia\+ZLl+Z (M= 1)+ > N, =
=1

1=1 =1
By using these formulas we can prove the following lemma.

Lemma 8.2. The coefficients {VL(X)}r>k are given by

(8.14) M) = Y

Jj=K

L>K.

The proof is done by the same way with Lemma 6.1, so we omit it.
Thus we see that the formal solution V (7T, X) of (8.10) is written by

TL—6K VL
»J

=2 Xzl
L>K j=K X)/
and further we see that dx (T0r) 'V (T, X) is majorized by
0x(Tor) ' V(T,X) = ¥ 7LZ6K b Vii g V(T, X)
X T 7’. < , .
L>K j=K L(R—X)*! R—-X
We finally obtain the following majorant functional equation:
(8.15)
A Y 7Cy
= et e e ) (750
(R—X)K +RK+1 ) 701 ) T ) R—X )

with Y = Y(T, X) = O(T¥). By these procedures of constructing the equation
(8.15), we get the following majorant relations between the uniquely determined
formal solutions.

Y(T,X)>V(T,X) > W(T,X) > Ult,x).
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At the end, we notice that the convergent of Y (T, X) follows from the classi-
cal implicit function theorem which assures the unique existence of convergent
solution of (8.15).

This completes the second proof. [l
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