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Abstract. We characterize the convergent or the divergent nature of a given
formal solution of nonlinear first order partial differential equations of the form

(SE) f(t, x, u, ∂tu, ∂xu) = 0 with u(0, x) ≡ 0,

where f(t, x, u, τ, ξ) is holomorphic in a neighborhood of the origin of Cd
t ×

Cn
x × Cu × Cd

τ × Cn
ξ . We call the equation (SE) is singular in t variables if

f(0, x, 0, τ, 0) ≡ 0 and fξ(0, x, 0, τ, 0) ≡ 0. Under these assumptions, we obtain
a criterion for the convergence or the divergence of a formal solution u(t, x) =∑
|α|≥1 uα(x)tα ∈ Ox[[t]] whose existence is assumed a priori. Moreover, in

the case of divergent solution, we estimate the rate of divergence in term of
Gevrey order which is often called the Maillet type theorem.

1. Introduction

We begin with a simple example of nonlinear ordinary differential equations

f(t, u, u′) ≡ (t− u(t))u′(t)− t2 = 0, u(0) = 0,

where t ∈ C denotes the complex variable and u′(t) = du/dt. By an easy
calculation we see that there are two formal solutions u(t) =

∑∞
n=1 unt

n ∈ C[[t]]
such that u1 = 0 and 1. Then we can prove that the formal solution is convergent
if we take u1 = 0 like a case of regular singular ordinary differential equations, but
the formal solution diverges if we take u1 = 1 as un ∼ n! like a case of irregular
singular ordinary differential equations of the first kind. Thus we understand
that the convergent property of formal solutions can not be foreseed from a given
equation, since it depends on each formal solution of a singular equation which
is defined by f(0, 0, τ) ≡ 0 (τ ∈ C) in our equation.

In the previous paper [MS], we extended the notion of singular partial differen-
tial equations of first order into the case of multi-dimensional t variables, and we
characterized the convergence or the divergence of a given formal solution. In this
paper, we shall extend the results in [MS] and [S3] by A. Shirai into the equa-
tions for which the degeneration occurs for restricted variables which includes
many class of linear and nonlinear singular partial differential equations studied
by many authors.
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We use the following notations in this paper: For (t, x) = (t1, · · · , td, x1, · · · , xn)
∈ Cd

t × Cn
x (d ≥ 1, n ≥ 0), we denote (∂t, ∂x) = (∂t1 , · · · , ∂td , ∂x1 , · · · , ∂xn) the

symbol of partial differentiations. We denote by Ox or C{x} the ring of germs of
holomorphic functions or the convergent power series in the variable x at x = 0.
We denote by Ox[[t]] the ring of formal power series of t with coefficients in Ox.
In the case where n = 0, we understand Ox = C, and therefore Ox[[t]] = C[[t]].
Moreover, we set Mx[[t]] = {u(t, x) ∈ Ox[[t]] ; u(0, x) ≡ 0}, that is,

u(t, x) ∈Mx[[t]] ⇐⇒ u(t, x) =
∑

|α|≥1
uα(x)tα, uα(x) ∈ Ox.(1.1)

We shall study the formal solutions u(t, x) ∈Mx[[t]] of the following nonlinear
first order partial differential equation;

f(t, x, u, ∂tu, ∂xu) = 0 with u(0, x) ≡ 0.(1.2)

Throughout this paper, we assume the following three assumptions:

[A1] f(t, x, u, τ, ξ) (τ = (τj) ∈ Cd, ξ = (ξk) ∈ Cn) is holomorphic in a
neighborhood of the origin. Moreover, f(t, x, u, τ, ξ) is an entire function in τ

variables for any fixed t, x, u and ξ in the definite domain.
[A2] The equation (1.2) is singular in t variables in the sense that

f(0, x, 0, τ, 0) ≡ 0 and
∂f

∂ξk

(0, x, 0, τ, 0) ≡ 0, (k = 1, 2, . . . , n).

(1.3)

[A3] The equation (1.2) has a formal solution u(t, x) ∈Mx[[t]].

Our purpose in this paper is to characterize the convergence or the divergence
of such a formal solution.

In order to state our results we need to prepare some notations.
Let ϕj(x) = ∂tju(0, x) ∈ Ox (j = 1, · · · , d) and put ϕ(x) = (ϕj(x)). Then

by letting t = 0 in the equation (1.2), we get an equation f(0, x, 0, ϕ(x), 0) ≡ 0.
Since this is a trivial relation from the first assumption in (1.3) of [A2], we
can not obtain any information on ϕ(x) from this equation. In order to obtain
informations for ϕ(x), we differentiate the equation (1.2) by ti (i = 1, 2, · · · , d)
and we get the following equations for {ϕi(x)} from the second assumptions in
(1.3) of [A2];

∂

∂ti
f(t, x, u(t, x), {∂tju(t, x)}, {∂xk

u(t, x)})
∣∣∣∣∣
t=0

(1.4)

≡ ∂f

∂ti
(0, x, 0, ϕ(x), 0) +

∂f

∂u
(0, x, 0, ϕ(x), 0)ϕi(x) = 0,

for i = 1, 2, . . . , d.
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We set a(x) = (0, x, 0, ϕ(x), 0) for the simplicity of notation. Now we define
holomorphic functions aij(x) (i, j = 1, 2, . . . , d) by

aij(x) =
∂2f

∂ti∂τj

(a(x)) +
∂2f

∂u∂τj

(a(x))ϕi(x).(1.5)

Then our main result is stated as follows which is a generalization of results in
[MS] and [S3] in the case where n = 0.

Theorem 1.1. Under the assumptions [A1], [A2] and [A3], we have:
(i) (Convergent Case) Let {λj}d

j=1 be the eigenvalues of the matrix (aij(0))d
i,j=1.

Then if {λj}d
j=1 satisfies the condition below which we call the Poincaré condition,

the formal solution u(t, x) ∈Mx[[t]] is convergent in a neighborhood of the origin:

Ch(λ1, . . . , λd) 63 0 (Poincaré condition),(1.6)

where Ch(λ1, . . . , λd) denotes the convex hull of {λ1, . . . , λd}.
(ii) (Divergent Case) Suppose that A(x) = (aij(x))d

i,j=1 is a nilpotent matrix,

and take an integer Nwith 1 ≤ N ≤ d such that AN(x) ≡ O, but Aj(x) 6≡ O for
j = 0, . . . , N − 1, where O denotes the null matrix. Then if fu(a(0)) 6= 0, the
formal solution u(t, x) ∈Mx[[t]] diverges in general, and it belongs to the Gevrey
class of order at most 2N in t variables, which means that the formal 2N-Borel
transform of u(t, x),

∑
|α|≥1 uα(x)tα/|α|!2N−1 is convergent in a neighborhood of

the origin.

The theorem will be proved by reducing the equation (1.2) to an equation
which is similar but more general than that studied by Gérard and Tahara [GT]
and many others as we shall show below.

We put v(t, x) = u(t, x) − ∑d
j=1 ϕj(x)tj (= O(|t|2)). Then by an easy calcu-

lation, we can see that v(t, x) satisfies the following nonlinear singular partial
differential equation:




d∑

i,j=1

aij(x)ti∂tj +
∂f

∂u
(a(x))


 v(t, x)(1.7)

=
∑

|α|=2

bα(x)tα + f3(t, x, v, ∂tv, ∂xv),

where bα(x) ∈ Ox and f3(t, x, v, τ, ξ) is holomorphic in a neighborhood of the
origin with Taylor expansion

f3(t, x, v, τ, ξ) =
∑

|α|+2p+|q|+2|r|≥3

fαpqr(x)tαvpτ qξr ∈ Ox{t, v, τ, ξ},
(1.8)

where α ∈ Nd, p ∈ N, q ∈ Nd, r ∈ Nn (N = {0, 1, 2, 3, · · · }) and Ox{X} denotes
the set of convergent series in all variables x and X.
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The theorem will be proved by showing the same statements for v(t, x) which
solves the equation (1.7). In the proofs, we first examine the existence of for-
mal solution v(t, x) =

∑
|α|≥2 vα(x)tα =

∑
L≥2 vL(t, x) ∈ Ox[[t]], with vL(t, x) of

homogeneous polynomials of degree L in t variables. In the case (i) of the theo-
rem, {vL(t, x)} are uniquely determined except those L’s for which the resonance
occurs by some α with |α| = L (cf. Remark 1.2 below). Therefore, the exis-
tence assumption of a formal solution v(t, x) and the Poincaré condition imply
the unique existence of vL(t, x) for large L, and the essential part of the proof
is how we manipulate the Poincaré condition or the nonresonance condition to
prove the convergence. It is actually done by showing a majorant estimate of the
inverse operator of P (t, x; ∂t) =

∑d
i,j=1 aij(x)ti∂tj +fu(a(x)) which appears on the

left hand side of (1.7). This enables us to construct a majorant equation (6.23)
which is solved by the classical implicit function theorem (cf. Proposition 6.1).
In the case (ii) of the theorem, we can easily examine the unique existence of the
formal solution v(t, x) ∈ Ox[[t]] by the nilpotency condition of A(x) = (aij(x)),
but the difficulty lies on the point that the operator P (t, x; ∂t) is not invertible
on Ot,x but is invertible on some space of Gevrey class in t variables (cf. Propo-
sition 7.1 and Remark 7.1). The norm inequality or the majorant relation for the
inverse operator P−1 established in Proposition 7.1 enables us to construct a ma-
jorant partial differential equation (7.13) for which the Gevrey order of solutions
is estimated by using a result in [S1] by A. Shirai.

We have to mention that the reduced equation (1.7) is a similar one studied
by Gérard and Tahara in their joint works (cf. [GT]). In their works they always
assume that the vector field

∑
i,j aij(x)ti∂tj on the left hand side is triangular that

aij(x) ≡ 0 if i > j, and in the nonlinear term f3 they assume the existence of
variables {ti∂tjv} instead of ∂tv which are not acceptable for a reduced equation
from a general equation of singular type. Therefore, we need more careful obser-
vation on the invertibility of the vector field and a norm inequality for the inverse
operator under which we can employ the majorant method.

Remark 1.1. (About the assumption [A1]) The assumption that the func-
tion f(t, x, u, τ, ξ) is an entire function in τ variable is only for the convenience.
Once we fix ϕ(x) = (ϕj(x)) ∈ Ox

d which satisfy the equations (1.4), it is sufficient
to assume that f is holomorphic in a neighborhood of (0, 0, 0, ϕ(0), 0).

Remark 1.2. (Nonresonance condition) If fu(a(0)) satisfies the nonreso-
nance condition, that is,

λ · α +
∂f

∂u
(a(0)) 6= 0, for all |α| ≥ 2,(1.9)

(λ · α =
∑d

j=1 λjαj), then the theorem does hold for the formal solution u(t, x) ∈
C[[t, x]] if we assume the existence of ϕ(x) = (ϕj(x)) ∈ Ox

d.
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Remark 1.3. (Singular equation) Our definition [A2] or (1.3) on the singular
equation corresponds to the one considered by T. Oshima [O] for linear partial
differential equations which we will explain in the next section. Especially, our
assumption that fξk

(0, x, 0, τ, 0) ≡ 0 (k = 1, 2, . . . , n) assures that in the reduced
equation (1.7) the vector field on the left hand side depends only on ∂tj (j =
1, 2 · · · , d). Instead of this assumption, if we assume

fξk
(0, 0, 0, τ, 0) ≡ 0 (k = 1, 2 · · · , n),

then we get a sigluar equation of another kind that in the reduced equation the
terms bk(x)∂xk

with bk(0) = 0 (k = 1, 2, · · · , n) appear in the vector field.
For such equations, similar problems have been studied in a series of papers

[CT], [CL] and [CLT] by Chen, Luo and Tahara where the reduced type equa-
tions were studied under more restricted conditions than ours which they called
the singular equations of totally characteristic type. The generalization of their
results has been studied by A. Shirai. The convergent result has been obtained
in [S2] under the generalized Poincaré condition, and the Maillet type theorem
has been studied in a preparing paper [S4].

Remark 1.4. (Assumption for A(x) = (aij(x))) In the theorem we assumed
that the matrix A(x) is regular in (i) or is nilpotent in (ii), but if we assume that
if A(0) singular but A(x) is regular for x 6= 0 we meet a different situation for
the formal solutions as is seen by the following simple example.

−xt∂tu + u = f(t, x) ∈ Ot,x, f(0, x) ≡ 0,

where t, x ∈ C. Let u(t, x) =
∑∞

n=0 un(x)tn. Then we have

(1− nx)un(x) = fn(x), n ≥ 1,

which shows the impossibility of the existence of formal solution u(t, x) in Ox[[t]].
In this equation, the unique formal solution u(t, x) ∈ C[[t, x]] exists in Ot[[x]]
which is divergent of Gevrey order 2, that is, the role of t and x is converted. For
linear equations such considerations are studied in complete form by Hibino [H]
which will be explained in the next section in a most easiest form.

2. Related Results in the Linear Equations.

Let us consider the following linear singular partial differential equation with
holomorphic coefficients in a neighborhood of the origin y = 0 (y ∈ Cm)

m∑

j=1

aj(y)∂ju + b(y)u = g(y) ∈ Oy, aj(0) = 0 (j = 1, 2, · · · , m),

(2.1)

where ∂ = (∂1, . . . , ∂m) (∂j = ∂/∂yj).
The essential part of the work by T. Oshima [O] will be stated as follows.
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LetA := I{a1, . . . , am} be the ideal ofOy generated by the coefficients {aj(y)},
and assume there exists d (1 ≤ d ≤ m) such that A = I{a1, · · · , ad} and
(∂iaj(0))d

i,j=1 is invertible. Then by dividing the variables y into two groups
by tj = yj (j = 1, · · · , d) and xk = yd+k (k = 1, · · · ,m− d), we get an equation

d∑

j=1

aj(t, x)∂tju +
m−d∑

k=1

bk(t, x)∂xk
u + b(t, x)u = g(t, x),(2.2)

where the coefficients satisfy aj(0, x) ≡ 0 with a condition that the matrix A(x) =
(∂tiaj(0, x))d

i,j=1 is invertible in a neighborhood of the origin x = 0, and bk(0, x) ≡
0.

When we consider the solution u(t, x) ∈Mx[[t]] as in the nonlinear equations,
the assumption [A2] is satisfied if and only if g(0, x) ≡ 0 which is a trivial re-
striction followed from the equation. Therefore our result is applicable in this
case.

Recently, M. Hibino [H] studied the singular equation (2.1) without any other
assumption, but under the assumption of the nonresonance condition between
b(0) and the nonzero eigenvalues of the Jacobi matrix

Dya(0) =
∂(a1, · · · , am)

∂(y1, · · · , ym)
(0),

which assures the unique existence of formal solution in C[[y]]. Therefore when
the Jacobi matrix Dya(0) is nilpotent, he only assumed that b(0) 6= 0. Now one
of his results is stated as follows.

Theorem. ([H]) Under the above mentioned conditions, let N be the maximal
dimension of generalized eigenspaces associated with zero eigenvalues of the Jacobi
matrix Dya(0) and or N = 1/2 if there does not exist zero eigenvalues. Then,
the formal solution u(y) ∈ C[[y]] belongs to a Gevrey space G2N , which means∑

α∈Nm uα yα/|α|!2N−1 ∈ Oy.

Therefore, Theorem 1.1 is an extension of a part of Hibino’s results to nonlinear
equations.

3. Example.

Example 3.1. Let (t, x) ∈ C2. We consider the following equation:
{
{u− a(x)t}ut − uux = p(x)t2,
u(0, x) ≡ 0,

(3.1)

where ut = ∂u/∂t, ux = ∂u/∂x and a(x), p(x) ∈ Ox with a(0) 6= 0. Let
u(t, x) =

∑∞
n=1 un(x)tn be a formal solution. Then u1(x) should satisfy

{u1(x)− a(x)}u1(x) ≡ 0.
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Therefore, u1(x) ≡ 0 or u1(x) = a(x), and after a choice of u1(x) we can see that
the formal solution is determined uniquely.

The case where u1(x) ≡ 0. The formal solution u(t, x) satisfies

a(x)tut = −p(x)t2 + uut − uux, u = O(t2).

This equation is a special case of the equation (1.7), and u(t, x) is convergent by
Theorem 1.1, (i), since a(0) 6= 0 which corresponds to the Poincaré condition.

The case where u1(x) = a(x). Let u(t, x) = a(x)t + v(t, x) (v = O(t2)). Then
v(t, x) satisfies v(a(x) + vt)− (a(x)t + v)(a′(x)t + vx) = p(x)t2, that is,

a(x)v = (p(x) + a(x)a′(x))t2 − vvt + a′(x)tv + a(x)tvx + vvx.

This equation is a special case of the equation (1.7) with aij(x) ≡ 0 which can be
applied Theorem 1.1, (ii). Therefore, when p(x)+a(x)a′(x) 6≡ 0, the uniquely de-
termined formal solution v(t, x) belongs to a class of Gevrey order 2 in t variable.
On the other hand, if p(x) + a(x)a′(x) ≡ 0, we have v(t, x) ≡ 0.

4. Preparations to Prove Theorem 1.1.

In this section, we shall prepare some notations, definitions and lemmas, which
will be used in the proof of Theorem 1.1.

• Dz0(R) = {x = (x1, . . . , xn) ∈ Cn ; |xj − z0| ≤ R, j = 1, 2, . . . , d, z0 ∈
C}.

• Oz0(R) : the set of holomorphic functions on x ∈ Dz0(R).
• C[t]L = {uL(t) =

∑
|α|=L uαtα ; uα ∈ C}. (Homogeneous polynomials of

order L)
• Oz0(R)[t]L = {uL(t, x) =

∑
|α|=L uα(x)tα ; uα(x) ∈ Oz0(R)}.

Definition 4.1 (s-Borel transform and Gevrey space Gs). Let R≥1 = {x ∈ R ;
x ≥ 1}. For d dimensional real vector s = (s1, s2, . . . , sd) ∈ (R≥1)

d and a formal
power series f(t, x) =

∑
α∈Nd fα(x)tα ∈ Ox[[t]], we define the s-Borel transform

Bs(f)(t, x) of f(t, x) by

Bs(f)(t, x) :=
∑

α∈Nd

fα(x)
|α|!

(s · α)!
tα,(4.1)

where s · α =
∑d

j=1 sjαj and (s · α)! = Γ(s · α + 1) by the Gamma function.
We say that f(t, x) ∈ Gs if Bs(f)(t, x) ∈ C{t, x}, and s is called the Gevrey

order in t variables.

We introduce the s-norm of uL(t) =
∑
|α|=L uαtα ∈ C[t]L by

||uL||s := inf{C > 0 ; Bs(uL)(t) ¿ C(t1 + · · ·+ td)
L}(4.2)

= max
|α|=L

{
|uα| α!

(s · α)!

}
, (α! = α1! · · ·αd!).
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Lemma 4.1. Let f(t, x) =
∑

α∈Nd fα(x)tα ∈ O0(R)[[t]] and assume s = (s, · · · , s)
∈ (R≥1)

d. For a regular matrix Q(x) = (Qij(x)) ∈ GL(d,O0(R)), the function
g(τ, x) := f(τQ(x), x) belongs to Gs in τ variables if and only if f(t, x) belongs
to Gs in t variables.

Proof. We only prove the sufficient condition, since the necessary condition
follows from it. By the definition, f(t, x) =

∑
fα(x)tα ∈ Gs in t variables if and

only if there exist positive constants A and B such that

max
x∈D0(R)

|fα(x)| ≤ AB|α| (s|α|)!
|α|! , for all α ∈ Nd.(4.3)

We recall g(τ, x) =
∑

fα(x)(τQ(x))α. For any fixed x ∈ D0(R), (τQ(x))α is
estimated by

(τQ(x))α =
d∏

j=1

(
d∑

k=1

τkQkj(x)

)αj

¿
(

max
i,j

max
x∈D0(R)

{|Qij(x)|}
)|α|

(τ1 + · · ·+ τd)
|α|.

We set C = maxi,j maxx∈D0(R) |Qij(x)|. Then by (4.3) we have

fα(x)(τQ(x))α ¿ A(BC)|α|
(s|α|)!
|α|! (τ1 + · · ·+ τd)

|α|, for all x ∈ D0(R).

This implies

Bs{fα(x)(τQ(x))α} ¿ A(BC)|α|
(s|α|)!
|α|!

∑

|β|=|α|

|α|!
β!

|α|!
(s|α|)! τβ

= A(BC)|α| (τ1 + · · ·+ τd)
|α|, for all x ∈ D0(R),

Therefore, for all x ∈ D0(R) we have

Bs(g)(τ, x) ¿ A
∑

α∈Nd

(BC)|α|(τ1 + · · ·+ τd)
|α| ∈ Oτ .

This proves that g(τ, x) ∈ Gs in τ variables. ¤

5. Proof of Theorem 1.1, (i).

We put v(t, x) = u(t, x) − ∑d
j=1 ϕj(x)tj ∈ Mx[[t]] which satisfies v(t, x) =

O(|t|2). Then, as stated in Introduction, it is easily examined that v(t, x) satisfies
the following singular equation:




d∑

i,j=1

aij(x)ti∂tj + c(x)


 v(t, x) =

∑

|α|=2

bα(x)tα + f3(t, x, v, ∂tv, ∂xv),

(5.1)
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with aij(x), c(x), bα(x) ∈ Ox. Here we remark that (aij(0))d
i,j=1 is a regular ma-

trix with eigenvalues {λj}d
j=1 which satisfy the Poincaré condition (1.6), c(x) =

fu(a(x)) and f3(t, x, v, τ, ξ) is holomorphic in a neighborhood of the origin with
Taylor expansion

f3(t, x, v, τ, ξ) =
∑

|α|+2p+|q|+2|r|≥3

fαpqr(x)tαvpτ qξr,(5.2)

where α ∈ Nd, p ∈ N, q ∈ Nd and r ∈ Nn.
By the Poincaré condition (1.6), there exists a positive integer K ≥ 2 such

that ∣∣∣∣
∑d

j=1
λjαj + c(0)

∣∣∣∣ ≥ C0 |α|, |α| ≥ K(5.3)

holds by some positive constant C0 > 0. We take and fix such K.
Once again we set w(t, x) = v(t, x) − ∑K−1

|α|=2 uα(x)tα (= O(|t|K)) as a new

unknown function. Then w(t, x) satisfies a singular equation of the following
form:




d∑

i,j=1

aij(x)ti∂tj + c(x)


 w =

∑

|α|=K

dα(x)tα + fK+1(t, x, w, ∂tw, ∂xw),

(5.4)

where dα(x) ∈ Ox and fK+1(t, x, u, τ, ξ) is holomorphic in a neighborhood of the
origin with Taylor expansion

fK+1(t, x, u, τ, ξ) =
∑

|α|+Kp+(K−1)|q|+K|r|≥K+1

fαpqr(x)tαupτ qξr.(5.5)

Therefore, the proof of Theorem 1.1, (i), is reduced to prove the following
Theorem:

Theorem 5.1. Under the condition (5.3), the equation (5.4) with w(t, x) =
O(|t|K) has a unique formal solution which converges in a neighborhood of the
origin.

We shall give two proofs of this Theorem, since both are seemed interesting.
The first one will be given in the next section which is based on the view point
as an evolution of (5.4) in t variables. The second one will be given in Appendix
(Section 8) where all the variable t and x are considered to play the same role in
a sense.

6. Proof of Theorem 5.1

By a linear change of t variables which brings (aij(0)) to its Jordan canonical
form, the equation (5.4) is reduced to the following one:

(Λ + ∆ + A)w(t, x) =
∑

|α|=K

ζα(x)tα + gK+1(t, x, w, ∂tw, ∂xw),(6.1)
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with w(t, x) = O(|t|K), where

Λ =
d∑

j=1

λjtj∂tj + c(0), ∆ =
d−1∑

j=1

δjtj+1∂tj ,(6.2)

A ≡ A(x) =
d∑

i,j=1

αij(x)ti∂tj + b(x), (αij(0) = 0, b(0) = 0),

and gK+1 is holomorphic in a neighborhood of the origin with the same Taylor
expansion with fK+1.

Remark 6.1. In the part ∆, it is normally considered that δj = 0 or 1. However,
we can take {δj} are as small as we want. Indeed, if we take a change of variables
by t̂j = εjtj, then δj is replaced by εδj.

For the proof our theorem, the following proposition plays an essential role to
employ the majorant method.

Proposition 6.1. Let us consider the linear operator P = Λ + ∆ + A.
(i) For all L ≥ K, the mapping P : O0(R)[t]L −→ O0(R)[t]L is invertible for

sufficiently small R > 0.
(ii) For u(t, x) ∈ O0(R)[t]L, if a majorant relation u(t, x) ¿ W (x)(t1 + · · · +

td)
L does hold by a function W (x) with non negative Taylor coefficients, then

there exists a positive constant F > 0 independent of L such that

P−1u(t, x) ¿ 1

L

F

R−X
W (x)(t1 + · · ·+ td)

L(6.3)

= (T∂T )−1 F

R−X
W (x)(t1 + · · ·+ td)

L,

where T = t1, . . . + td and X = x1 + · · ·+ xn.

Remark 6.2. By the above lemma, a majorant operator of P−1 on the space
of homogeneous polynomials in t variables with holomorphic coefficients in x

variables is given by

P−1 ¿ (T∂T )−1 F

R−X
¿ F

R−X
.(6.4)

The precise definition of majorant operator will be given later.

Proof of Proposition 6.1, (i). First we prove the invertibility of the operator
P = Λ + ∆ + A on C[t]L (L ≥ K) for any fixed x ∈ D0(R) which is considered
as a parameter.

Let us, first, consider a linear mapping T = (Tαβ)|α|=|β|=L : C[t]L −→ C[t]L
defined by

∑

|β|=L

uβtβ 7→ ∑

|α|=L





∑

β

Tαβuβ



 tα.
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We take the norm ‖ · ‖1 on C[t]L with 1 = (1, · · · , 1) defined by (4.2), that is,
for u(t) =

∑
|β|=L uβtβ ∈ C[t]L, ‖u‖1 = inf{C > 0 ; u(t) ¿ C(t1 + · · · td)L} =

supβ{|uβ|β!/|β|!}.
Then the operator norm ‖T‖1 of T is given by

||T ||1 = max
|α|=L

∑

|β|=L

|Tαβ|α!

β!
.(6.5)

We omit the proof, since it is elementary.
We return to the proof of the lemma. We consider the mapping Λ =

∑d
j=1 λj∂tj

+c(0) : C[t]L → C[t]L (L ≥ K). Since the matrix representation T of Λ is a
diagonal matrix with Tαα =

∑d
j=1 λjαj + c(0) 6= 0 (L ≥ K) which implies the

invertibility of Λ, and by the condition (5.3) we get the following operator norm
of Λ−1

||Λ−1||1 ≤ (C0L)−1,(6.6)

where C0 > 0 is the constant in (5.3).
Next, we consider the estimate of the operator norms of ∆ and A on C[t]L

for any fixed x ∈ D0(R). By computing the norms of ∆u(t) and Au(t) for
u(t) ∈ C[t]L, their operator norms are estimated as follows:

||∆||1 ≤ L× max
j=1,2,... ,d−1

|δj|,(6.7)

and

||A||1 ≤ L×max
i

d∑

j=1

sup
x∈D0(R0)

|αij(x)|+ sup
x∈D0(R0)

|b(x)|,(6.8)

By Remark 6.1, we may assume the constants δj in ∆ are arbitrary small as we
want, and we recall that αij(x) and b(x) vanish at x = 0. Therefore, by taking
R > 0 sufficiently small we may assume that

‖∆ + A‖1 < C0L, for all x ∈ D0(R).(6.9)

Therefore, for all x ∈ D0(R) we have ||Λ−1(∆ + A)||1 < 1 on C[t]L (L ≥ K)
which proves the invertibility of P = Λ + ∆ + A on C[t]L (L ≥ K).

Now the holomorphic dependency of P−1 on x ∈ D0(R) follows immediately.
In fact, we first notice that P−1 is given by the Neumann series

P−1 = (Λ + ∆ + A)−1 =
{∑∞

n=0
(−Λ(∆ + A)n

}
Λ−1.

Here we note that the matrix representation of the operator Λ−1(∆ + A) (A =
A(x)) depends holomorphically on x ∈ D0(R) and is constructive uniformly on
the same domain. Therefore the convergence of the Neumann series is uniform
on D0(R), which completes the proof. ¤
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For the proof of the majorant relation (6.3) in Proposition 6.1, (ii), we introduce
a notion of majorant operator.

Definition 6.1 (Majorant Operator). Let a(x) = (aαβ(x))|α|=|β|=L and A(x)
= (Aαβ(x))|α|=|β|=L be linear operators on O0(R)[t]L. We say that A(x) is a
majorant operator of a(x), if aαβ(x) ¿ Aαβ(x) hold for all |α| = |β| = L. If A(x)
is a majorant operator of a(x), we write this relation by a(x) ¿ A(x).

Remark 6.3. The following relations are obviously hold:

• If a(x) ¿ A(x) and b(x) ¿ B(x), then a(x)b(x) ¿ A(x)B(x).
• Let a(x) ¿ A(x). If two formal power series u(t, x) and U(t, x) satisfy

u(t, x) ¿ U(t, x), then a(x)u(t, x) ¿ A(x)U(t, x).

Proof of Proposition 6.1, (ii) We set Λ0 =
∑d

j=1 tj∂tj . By the condition (5.3)

and the above definition, we have Λ−1 ¿ (C0Λ0)
−1. For a formal power series

f(x) =
∑

fαxα ∈ C[[x]], we define |f |(x) by |f |(x) :=
∑ |fα|xα. By using this

notation, we have a majorant relation

|∆|+ |A| À ∆ + A,

where |∆| := ∑d−1
j=1 |δj|tj+1∂tj and |A| := ∑d

i,j=1 |αij|(x)ti∂tj + |b|(x).
Now we take R′(≤ R) such that

||(C0Λ0)
−1(|∆|+ |A|)||1 < 1, for all x ∈ D0(R

′).(6.10)

By this inequality, a majorant operator of P−1 is given by

P−1 = (Λ + ∆ + A)−1 =

{ ∞∑

n=0

(−Λ−1(∆ + A))n

}
Λ−1

¿
{ ∞∑

n=0

((C0Λ0)
−1(|∆|+ |A|))n

}
(C0Λ0)

−1

= {I − (C0Λ0)
−1(|∆|+ |A|)}−1(C0Λ0)

−1

= {(C0Λ0)− (|∆|+ |A|)}−1 =: Q−1,

where I denotes the identity operator.
Let a(x) = (aαβ(x))|α|=|β|=L and C(x) = (Cαβ(x))|α|=|β|=L (Cαβ(x) À 0) be

the matrix representations of the linear operators P−1 and {I − (C0Λ0)
−1(|∆|+

|A|)}−1, respectively. Then the matrix representation A(x) = (Aαβ(x))|α|=|β|=L

of the linear operator Q−1 is given by (Aαβ(x)) = (C0L)−1× (Cαβ(x)). Therefore,
we have the majorant relation aαβ(x) ¿ (C0L)−1Cαβ(x) for all |α| = |β| = L.

Now we assume a majorant relation

u(t, x) =
∑

|α|=L

uα(x)tα ¿ W (x)(t1 + · · ·+ td)
L, (W (x) À 0),

which means uα(x) ¿ W (x)L!/α! for all |α| = L.
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We put P−1u(t, x) =
∑
|α|=L vα(x)tα. Since the matrix representation of P−1

is a(x) = (aαβ(x))|α|=|β|=L, we have

vα(x) =
∑

|β|=L

aαβ(x)uβ(x) ¿ W (x)

C0L

∑

|β|=L

Cαβ(x)
L!

β!
,

that is,

vα(x)
α!

L!
¿ W (x)

C0L

∑

|β|=L

Cαβ(x)
α!

β!
.(6.11)

In order to prove (6.3), it is sufficient to prove the existence of a positive constant
F and a constant R′′(≤ R′) independent of L such that

∑

|β|=L

Cαβ(x)
α!

β!
¿ F

R′′ −X
, |α| = L,(6.12)

where X = x1 + · · ·+ xn. In fact, if once we prove (6.12), then we have

P−1u(t, x) =
∑

|α|=L

vα(x)tα =
∑

|α|=L

vα(x)
α!

L!

L!

α!
tα

¿ ∑

|α|=L

W (x)

C0L


 ∑

|β|=L

Cαβ(x)
α!

β!


 L!

α!
tα

¿ W (x)

C0L

F

R−X
(t1 + · · ·+ td)

L,

which we want to prove. Thus the proof is reduced to establish (6.12).

Proof of (6.12). It is sufficient to prove the existence of R′′(≤ R′) such that the
following estimate does hold by a positive constant C > 0 independent of L.

max
α

max
x∈D0(R′′)

∑

|β|=L

|Cαβ(x)|α!

β!
≤ C.(6.13)

In fact, by (6.13), fα(x) =
∑

β Cαβ(x)α!/β! is holomorphic on D0(R
′′) and

|fα(x)| ≤ C. Then by Cauchy’s integral formula we can prove the following
majorant relations.

fα(x) ¿ C(R′′)n

(R′′ − x1)(R′′ − x2) · · · (R′′ − xn)
¿ CR′′

R′′ −X
(6.14)

by X = x1 + · · ·+ xn.
Now let us prove (6.13). We use the following notations.

||x|| = (|x1|, . . . , |xn|) ∈ (R≥0)
n, ||R|| = (R, . . . , R) ∈ (R≥0)

n.

Since Cαβ(x) À 0, we have

max
x∈D0(R)

|Cαβ(x)| ≤ max
x∈D0(R)

Cαβ(||x||) ≤ Cαβ(||R||).
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Now we take a positive constant R′′ > 0 such that

||(C0Λ0)
−1(|∆|+ |A|)|x=||R′′||||1 < 1,

where ‖R′′‖ = (R′′, · · · , R′′) ∈ (R>0)
n and

(|∆|+ |A|)|x=‖R′′‖ ≡ |∆|+ ∑

i,j

|αij|(‖R′′‖)tj∂tj + |b|(‖R′′‖) : C[t]L → C[t]L,

the restriction mapping at x = ‖R′′‖.
Then for all |α| = L we have

∑

|β|=L

max
x∈D0(R′′)

|Cαβ(x)|α!

β!
≤ ∑

|β|=L

Cαβ(||R′′||)α!

β!

≤ max
|α|=L

∑

|β|=L

Cαβ(||R′′||)α!

β!

=
∣∣∣∣
∣∣∣∣
{
I − (C0Λ0)

−1(|∆|+ |A|)|x=||R′′||
}−1

∣∣∣∣
∣∣∣∣
1

≤ 1

1− ||(C0Λ0)−1(|∆|+ |A|)|x=||R′′||||1 < ∞,

where we used the norm equality (6.5) at the place of the equality. ¤

Proof of Theorem 5.1. We take a small positive constant R > 0 such that the
functions in the equation are holomorphic on D0(R) and that Proposition 6.1 does
hold. By this choice of R we easily see that the formal solution w(t, x) ∈Mx[[t]]
with w(t, x) = O(|t|K) of the equation (6.1) exists uniquely by the invertibil-
ity of P on every O0(R)[t]L (L ≥ K). Indeed, the formal solution w(t, x) =∑

L≥K wL(t, x) (wL(t, x) ∈ O0(R)[t]L) are determined inductively on L. There-
fore, we have only to prove the convergence of this formal solution w(t, x).

Let U(t, x) = Pw(t, x) be a new unknown function. Then U(t, x) satisfies the
following equation by (6.1):





U(t, x) =
∑

|α|=K

ζα(x)tα + gK+1(t, x, P−1U, ∂tP
−1U, ∂xP

−1U),

U(t, x) = O(|t|K).

(6.15)

In order to prove the convergence of formal solution U(t, x), we prepare majo-
rant functions (which are convergent) as follows.

∑

|α|=K

ζα(x)tα ¿ A

(R−X)K
TK , (T = t1 + · · ·+ td, X = x1 + · · ·+ xn),
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gK+1(t, x, u, τ, ξ)

¿ ∑

|α+Kp+(K−1)|q|+K|r|≥K+1

Gαpqr

(R−X)|α|+p+|q|+|r|T
|α|upτ qξr

=: GK+1(T, X, u, τ, ξ).

We recall the majorant relations (6.3) in Proposition 6.1 and (6.4), and notice an
elementary majorant relation of operators that ∂tj(T∂T )−1 ¿ 1/T . We consider
the following equation:





W (T, X) =
A

(R−X)K
TK + GK+1

(
T, X,

F

R−X
W,

{
F

R−X

W

T

}d

j=1
,
{
∂xk

(T∂T )−1 F

R−X
W

}n

k=1

)
,

W (T, X) = O(TK),

(6.16)

where F is the same positive constant in (6.3). We note that ∂xk
= ∂X in the

above equation.
By this construction of the equation, we easily see that the formal solution

W (T, X) ∈ OX [[T ]] (which is uniquely determined) is a majorant function of
U(t, x), that is, W (t1+· · ·+td, x1+· · ·+xn) À U(t, x) holds. Therefore, it is suffi-
cient to prove the convergence of W (T,X). We put W (T, X) =

∑
L≥K WL(X)TL

and by substituting this into (6.16), we obtain the following recursion formulas:

WK(X) =
A

(R−X)K
,(6.17)

and for L ≥ K + 1,

WL(X) =
∑

V (α,p,q,r)≥K+1

Gαpqr

(R−X)|α|+p+|q|+|r|
∑′ p∏

l=1

F

R−X
WLl

(X)(6.18)

×
d∏

j=1

qj∏

l=1

F

R−X
WMjl

(X)
n∏

k=1

rk∏

l=1

1

Nkl

∂xk

F

R−X
WNkl

(X),

where

V (α, p, q, r) = |α|+ Kp + (K − 1)|q|+ K|r|,(6.19)

and summation
∑′ is taken over

|α|+
p∑

l=1

Ll +
d∑

j=1

qj∑

l=1

(Mjl − 1) +
n∑

k=1

rk∑

l=1

Nkl = L.(6.20)

By these recursion formulas, we can prove the following lemma:
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Lemma 6.1. The coefficients {WL(X)}L≥K are given by

WL(X) =
10L−9K∑

j=K

WLj

(R−X)j
, by some WLj ≥ 0.(6.21)

Proof of Lemma 6.1. The expression (6.21) can be proved inductively on L by
estimating the powers of 1/(R−X). The case L = K is trivial, and consider the
case L > K. The lower bound is easy to prove, so we omit it. The upper bound
is estimated by

j ≤ |α|+ p + |q|+ |r|+
p∑

l=1

(10Ll − 9K + 1)

+
d∑

j=1

qj∑

l=1

(10Mjl − 9K + 1) +
n∑

k=1

rk∑

l=1

(10Nkl − 9K + 2)

= 10L− 9{|α|+ Kp + (K − 1)|q|+ K|r|}+ 2p + 3|q|+ 3|r|
≤ 10L− 9{|α|+ Kp + (K − 1)|q|+ K|r|}

+
3

K − 1
{|α|+ Kp + (K − 1)|q|+ K|r|}

= 10L−
(
9− 3

K − 1

)
{|α|+ Kp + (K − 1)|q|+ K|r|}

≤ 10L−
(
9− 3

K − 1

)
(K + 1)

= 10L− 9K +

(
3(K + 1)

K − 1
− 9

)

≤ 10L− 9K.

This proves the lemma. ¤

By the representation (6.21), we have the following majorant relation:

∂xk
(T∂T )−1 F

R−X
W (T, X) =

∑

L≥K

10L−9K∑

j=K

j + 1

L

FWLj

(R−X)j+2
TL(6.22)

¿ 10F

(R−X)2
W (T,X).

As the final step we construct the following functional equation which may be
called a majorant (functional) equation to the equation (6.16):

V (T,X) =
A

(R−X)K
TK(6.23)

+GK+1

(
T, X,

F

R−X
V,

{
F

R−X

V

T

}d

j=1
,

{
10F

(R−X)2
V

}n

k=1

)
,
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with V (T, X) = O(TK). The existence of unique formal solution V (T, X) which
is convergent follows from the classical implicit function theorem, and the above
construction of the equation shows that W (T, X) ¿ V (T, X) which implies the
convergence of U(t, x). ¤

7. Proof of Theorem 1.1, (ii).

We recall the equation we consider is given by
(∑d

i,j=1
aij(x)ti∂tj + c(x))

)
v(t, x)(7.1)

=
∑

|α|=2

bα(x)tα + f3(t, x, v, ∂tv, ∂xv),

where c(x) = fu(a(x)) with c(0) 6= 0 and A(x) = (aij(x))d
ij is a nilpotent matrix

such that A(x)N ≡ O but A(x)j 6≡ O for 0 ≤ j ≤ N − 1 (1 ≤ N ≤ d).
We remark that by the assumption that c(0) 6= 0, we may assume c(x) ≡ 1 in

the above equation by multiplying c(x)−1 to the equation which does not change
the assumption for A(x).

Let assume the functions in the equation are holomorphic in x on D0(R) by an
R > 0. Then we can easily examine the unique existence of the formal solution
v(t, x) =

∑
|α|≥2 vα(x)tα (vα(x) ∈ O(R)). Indeed, under our assumptions the

mapping
d∑

i,j=1

aij(x)ti∂tj + 1 : O(R)[t]L → O(R)[t]L,

is invertible by the fact that the matrix representation of the part of vector field
which we set by A(x) is nilpotent again. Therefore the formal solution is uniquely
determined inductively on L ≥ 2 for vL(t, x) =

∑
|α|=L vα(x)tα ∈ O(R)[t]L.

Our proof is thus reduced only to estimate the Gevrey order in t variables
of the formal solution. Here we recall Lemma 4.1 which guarantees to make a
change of variables t by (τ1, · · · , τd) = (t1, · · · , td)Q(x) by Q(x) ∈ GL(d,O(R)).

By the assumption of nilpotency for A(x), there exists an invertible matrix
Q(x) = (Qij(x)) over the field of meromorphic functions in a neighborhood of
the origin such that

Q(x)−1(aij(x))Q(x) = diag(B1, · · · , BI , OJ) : Jordan canonical form,

(7.2)

where diag(· · · ) denotes the diagonal matrix with the diagonal blocks (· · · ). Here,
Bi

ni = O (ni ≥ 1) and OJ is the zero matrix block of size J with n1+· · ·+nI+J =
d, and by the assumption we have max{n1, . . . , nI} = N .

Now we make a “formal” change of variables by

(τ1, . . . , τd) = (t1, . . . , td)Q(x), yk = xk (k = 1, · · · , n).
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Here the “formal” means that Q(x) may admit meromorphic singular point at
the origin, and it is an actual holomorphic change at the points if Q(x) is holo-
morphically invertible at the origin.

Since ∂ti =
∑d

j=1 Qij(x)∂τj
and ∂xk

=
∑d

j=1 ti{∂xk
Qij(x)}∂τj

+ ∂yk
, in the re-

duced equation by this change of variables the vector field is changed by the
Jordan canonical form (7.2), and the nonlinear term f3 is changed to g3 which
satisfies the same condition.

According to the form of (7.2), we make a further change of variables, y 7→ x ∈
Cn (as before), and make a decomposition τ = (y, z) ∈ Cd by

(y, z) = (y1, . . . ,yI , z), yi = (yi,1, . . . , yi,ni
) ∈ Cni , z = (z1, . . . , zJ) ∈ CJ

Now the equation (7.1) is reduced to the following equation:





Pv(y, z, x) =
∑
|α|+|β|=2 ζαβ(x)yαzβ + g3(y, z, x, v, ∂yv, ∂zv, ∂xv),

v(y, z, x) = O((|y|+ |z|)2),

(7.3)

where

P =
I∑

i=1

ni−1∑

j=1

δ yi,j+1∂yi,j
+ 1, δ ∈ C,(7.4)

g3(y, z, x, v, ζ, η, ξ)(7.5)

=
∑

|α|+|β|+2p+|q1|+|q2|+2|r|≥3

gαβpq1q2r(x)yαzβvpζq1

ηq2

ξr,

where q1 ∈ Nn1+···+nI , q2 ∈ NJ .
We remark that the constant δ is assumed as small as we want by Remark 6.1.

Here we have to notice that in the reduced equation (7.3) the origin x = 0 may
be a singular point. Therefore, the proof of the theorem is divided into two steps.
In the first step, we prove the theorem under the assumption of holomorphy at
x = 0. In the second step, we remove such restriction by using the maximum
principle for the holomorphic functions from the fact that the equation has a
unique formal solution v(t, x) ∈ O(R)[[t]] which was mentioned above.

7.1. Holomorphic case. The proof below follows the arguments in [S1] and
[S3] by Shirai. Especially, in [S3], the case of absence of the variables x was
studied, and some of proofs in the below will be omitted or shortened since they
are essentially the same.

We assume the equation (7.3) is holomprhic in a neighborhood of the origin
and we shall prove that the formal solution v(y, z, x) of (7.3) belongs to G2N in
(y, z) variables with N = max{ni ; i = 1, 2, · · · , I}. In order to do that it is
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sufficient to prove v(y, z, x) belongs to some Gevrey space Gs in (y, z) variables
with s = (s1, s2, · · · , sd) such that ‖s‖ = max{sj} ≤ 2N .

Let us prepare the following lemma:

Proposition 7.1. (i) For all L ≥ 2, there exists a radius R > 0 independent of
L such that the mapping P : O0(R)[y, z]L −→ O0(R)[y, z]L is invertible.

(ii) Let s̃ = (s1, · · · , sI ,1J) ∈ Nd, where

si = (1, 2, · · · , ni) ∈ Nni , 1J = (1, · · · , 1) ∈ NJ ,

as a manner corresponding to the decomposition τ = (y, z). For kd = (k, · · · , k) ∈
Nd we define s̃ + kd (or s̃ + k, for short) by the summation componentwisely.

For f(y, z, x) ∈ O0(R)[y, z]L, if Bs̃+k(f)(y, z, x) ¿ WL(X)TL (T = |y| +
|z|, X = |x|), then there exists a positive constant C > 0 independent of L such
that

Bs̃+k(P−1f)(y, z, x) ¿ C WL(X)TL.(7.6)

Proof. (i) is obvious since the vector field is nilpotent as we mentioned before.
(ii) For an operator Q on C[t]L, ‖Q‖s̃+k denotes the operator norm equipped

with the norm ‖ · ‖s̃+k on C[t]L. Then it is easily proved that

‖yi,j+1∂yi,j
‖s̃+k ≤ 1

for all i and j. Therefore by taking |δ| so small that (d − J − I)|δ| < 1 we get
the majorant estimate (7.6) by C = 1/(1− (d− J − I)|δ|). ¤
Remark 7.1. This lemma shows the bijectivity of the mapping P : G s̃+k → G s̃+k

for all k ≥ 0. Indeed, let f(y, z, x) =
∑

L≥1 fL(y, z, x) ∈ G s̃+k with fL(y, z, x) ∈
O0(R)[y, z]L. Since Bs̃+kf(y, z, x) =

∑
L≥1 Bs̃+kfL(y, z, x) ∈ Oy,z,x, there exist

positive constants M and R′ such that

Bs̃+kf(y, z, x) ¿ M

(1−X/R′)(1− T/R′)
=

M

1−X/R′
∑

L≥1

TL

R′L ,

where T and X are given as above. This means that

Bs̃+kfL(y, z, x) ¿ MTL

R′L(1−X/R′)
,

and for the formal inverse P−1f we have

Bs̃+k(P−1f)(y, z, x) ¿ CM

(1−X/R′)(1− T/R′)
∈ Oy,z,x.
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We put U(y, z, x) = Pv(y, z, x) as a new unknown function. Then, U(y, z, x)
satisfies the following equation:





U(y, z, x) =
∑
|α|+|β|=2 ζαβ(x)yαzβ

+g3(y, z, x, P−1U, ∂yP
−1U, ∂zP

−1U, ∂xP
−1U),

U(y, z, x) = O((|y|+ |z|)2).

(7.7)

Now we apply the s̃-Borel transform to the equation (7.7), we obtain

Bs̃(U)(y, z, x) =
∑

|α|+|β|=2

ζαβ(x)
(|α|+ |β|)!
(s̃ · (α, β))!

yαzβ(7.8)

+Bs̃{g3(y, z, x, P−1U, ∂yP
−1U, ∂zP

−1U, ∂xP
−1U)}.

In order to construct a majorant equation for (7.8), we prepare the following
lemma:

Lemma 7.1. (i) The Borel transform of a product (uv)(y, z, x) is majorized by

Bs̃(uv)(y, z, x) ¿ NBs̃(|u|)(y, z, x)× Bs̃(|v|)(y, z, x),(7.9)

where N = max{n1, . . . , nI}.
(ii) If Bs̃(u)(y, z, x) ¿ W (T, X) (T = |y| + |z|, X = |x|), then there exists a

positive constant C1 > 0 independent of y, z and x such that the Borel transforms
of ∂yi,j

u, ∂zk
u and ∂xk

u are majorized by

Bs̃(∂yi,j
u)(y, z, x) ¿ C1∂T (T∂T )j−1W (T,X),(7.10)

Bs̃(∂zk
u)(y, z, x) ¿ C1∂T W (T, X),(7.11)

Bs̃(∂xk
u)(y, z, x) ¿ C1∂XW (T, X),(7.12)

Proof. The proofs are the same with those of Lemma 2 in [S3], so we omit it.
¤

Now we consider the following equation which is a majorant equation of (7.8):

W (T,X) =


 ∑

|α|+|β|=2

|ζαβ|(X)
(|α|+ |β|)!
(s̃ · (α, β))!


 T 2(7.13)

+|g3|
(
T,X, C ′W,

{{
C ′∂T (T∂T )j−1W

}ni

j=1

}I

i=1
,

{C ′∂T W}J
k=1 , {C ′∂XW}n

k=1

)
,

with W (T, X) = O(T 2) where T = (T, . . . , T ) ∈ Cd, X = (X, . . . , X) ∈ Cn and
C ′ = C1CN .
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Now by the construction of the equation (7.13), we easily see that the formal

solution W (T, X) ∈ OX [[T ]] is a majorant function of Bs̃(U)(y, z, x) of (7.8) by
replacing T = y1,1 + · · ·+ yI,nI

+ z1 + · · ·+ zJ and X = x1 + · · ·+ xn.

Here we recall the result in [S1] by Shirai in a special form attached to our
case. Let us consider the following equation.

V (T,X) = g(X)TK + hK+1(T, X, V, {Dj
T V }p

j=1, DXV )

with V = O(TK), where g(X) and hK+1(T, X, V, τ, ξ) (τ ∈ Cp, ξ ∈ C) are
holomorphic in a neighborhood of the origin and

hK+1(T, X, V, τ, ξ) =
∑′

hab{c(j)}d(X)T aV b
p∏

j=1

τ
c(j)
j ξd,

and the summation
∑′ is taken over

V (a, b, {c(j)}, d) := a + Kb +
∑

j

(K − j)c(j) + Kd ≥ K + 1,

the left hand side means the order of zeros in T of each monomial by substituting
V (t, x) = O(TK).

Then the formal solution V (T, X) ∈ OX [[t]] which exists uniquely belongs to
Gσ+1 in T variable with

σ = max

{
A(a, b, {c(j)}, d)

V (a, b, {c(j)}, d)−K
; hab{c(j)}d(x) 6≡ 0

}
,

by A(a, b, {c(j)}, d) (∈ {0, 1, 2, · · · , p}) which denotes the maximal order of dif-
ferentiations which appears in the monomial. (This is a special case of Theorem
1 in [S1].)

We return to the equation (7.13). In this case, K = 2, V (a, b, {c(j)}, d)−K ≥
1 and A(a, b, {c(j)}, d) ≤ max{ni ; i = 1, 2, · · · , I} = N which shows that

W (T, X) ∈ GN+1 in T variable. Therefore Bs̃(U) (U = Pv) belongs to the Gevrey

space GN+1 in τ variables τ(= (y, z)) variables, which implies U = Pv ∈ G s̃+N in

τ variables, and hence v(τ, x) = P−1U ∈ G s̃+N in τ variables by Proposition 7.1
and Remark 7.1. Then by Lemma 4.1, we have v(t, x) ∈ G2N in t variables, since
each component of s̃ is estimated by N = max{ni ; i = 1, 2, · · · , I}. ¤

7.2. Meromorphic case. In this subsection, we shall prove the theorem in the
case where Q(x) or Q(x)−1 is singular at the origin by the idea used in [M] by
Miyake where the inverse theorem of Cauchy-Kowalevski’s theorem for general
systems was studied. The theorem is an immediate result from the following
lemma:
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Lemma 7.2. Assume that Q(x) or Q(x)−1 is singular at the origin. We may
assume that Q(x) and Q(x)−1 are holomorphic on

∏n
j=1{Rj−ε ≤ |xj| ≤ Rj+ε} ⊂

D0(R) by suitable taking positive constants Rj > 0 and ε > 0 (j = 1, 2, · · · , n)
such that 0 < Rj − ε < Rj + ε < R. Then the formal solution v(τ, x) (τ = (y, z))
of (7.3) belongs to G2N in τ variables on

∏n
j=1{|xj| ≤ Rj}.

Proof. We, first, notice that we already know there exists a unique formal solution
v(τ, x) =

∑
|α|≥2 vα(x)tα ∈ Ox[[t]], where we may assume that vα(x) ∈ O0(R) by

a small R > 0 for all α. We may consider that this R is the one in the statement
of the lemma.

Let x̂ = (x̂1, · · · , x̂n) ∈ ∏n
j=1{|xj| = Rj} be arbitrary fixed. Then by the

assumption, Q(x) is holomorphically invertible on ε neighborhood of x̂. By the
result in the previous subsection, we know that the formal solution v(τ, x) belongs
to G2N in τ variables in a neighborhood of x̂. Therefore there exists a positive
constant r(x̂) (which may depend on x̂) such that the following Gevrey estimates
hold by positive constants Ax̂ and Bx̂ which may depend on x̂.

max
|xj−x̂j |≤r(x̂)

|vα(x)| ≤ Ax̂ Bx̂
|α| {(2N − 1)|α|}!,(7.14)

for all α ∈ Nd with |α| ≥ 2.
Since the polycircle C(R) =

∏{|xj| = Rj} (R = (R1, · · · , Rd)) is compact, we
can take finite number of {x̂(k)}k on the polycircle so that the union of r(x̂(k))
neighborhood of x̂(k)’s covers the polycircle C(R). Now by taking A the maximum
of Ax̂(k) ’s and B the maximum of Bx̂(k) ’s, we get the following Gevrey estimates
on the polycircle C(R),

max
x∈C(R)

|vα(x)| ≤ AB|α| {(2N − 1)|α|}!,(7.15)

for all α ∈ Nd with |α| ≥ 2. Since vα(x) are all holomorphic on D0(R), by the
maximum principle we get the same Gevrey estimation on the polydisc

∏
j{|xj| ≤

Rj}, which proves the lemma. ¤

8. Appendix: Alternative Proof of Theorem 5.1.

In this section, we give an alternative proof of Theorem 5.1. The proof given
in Section 6 is based on the view point as evolution equations in t variables, and
that given in this Appendix is based on the view point that the role of variables
t and x are equivalent in a sense.
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By a linear change of t variables which brings (aij(0)) to its Jordan canonical
form, the equation (5.4) is reduced to the following equation:

(Λ + ∆)w(t, x) =
d∑

i,j=1

αij(x)ti∂tjw + η(x)w +
∑

|α|=K

ζα(x)tα(8.1)

+gK+1(t, x, w, ∂tw, ∂xw),

where

Λ =
d∑

j=1

λjtj∂tj + c(0), ∆ =
d−1∑

j=1

δjtj+1∂tj ,(8.2)

and αij(x) (= O(|x|)), η(x) (= O(|x|)) are holomorphic in a neighborhood of the
origin, and gK+1 is holomorphic in a neighborhood of the origin with a similar
Taylor expansion with (5.5).

Let C[t]L[x]M be a set of homogeneous polynomials of degree L in t and of
degree M in x, that is,

C[t]L[x]M =
{
uLM(t, x) =

∑
|α|=L,|β|=M

uαβtαxβ ; uαβ ∈ C
}

.

We define a set of homogeneous polynomials of degree L in t by

C[t]L[[x]] =
{
uL(t, x) =

∑
M≥0

uLM(t, x) ; uLM(t, x) ∈ C[t]L[x]M
}

.

By substituting w(t, x) =
∑

L≥K wL(t, x) (wL(t, x) ∈ C[t]L[[x]]) into (8.1), we
get the following recursion formula:

(Λ + ∆)wK(t, x) =
d∑

i,j=1

αij(x)ti∂tjwK(t, x) + η(x)wK(t, x) +
∑

|α|=K

ζα(x)tα,

and for L ≥ K + 1,

(Λ + ∆)wL(t, x) =
d∑

i,j=1

αij(x)ti∂tjwL(t, x) + η(x)wL(t, x)

+HL(t, x, {wL′}L′<L, {∂twL′}L′<L, {∂xwL′}L′<L),

where HL denotes a homogeneous polynomial of degree L in t.
Next we substitute wL(t, x) =

∑
M≥0 wLM(t, x) (wLM(t, x) ∈ C[t]L[x]M) into

the above recursion formulas, we have

(Λ + ∆)wLM(t, x) = HLM(t, x, {wL′M ′(t, x)}(L′,M ′)<(L,M)),(8.3)

where HLM denotes a homogeneous polynomial of degree L in t and of degree M

in x, and (L′,M ′) < (L,M) denotes the lexicographic order.
This recursion formula (8.3) has a unique solution wLM(t, x) by the following

Lemma:
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Lemma 8.1. Let P = Λ + ∆. Then we have:
(i) The mapping P : C[t]L[x]M −→ C[t]L[x]M is invertible for all L ≥ K and

M ≥ 0.
(ii) If a majorant relation uLM(t, x) ¿ WLM × TLXM (T = t1 + · · ·+ td, X =

x1 + · · ·+xn) holds, then there exists a positive constant C1 independent of L and
M such that

P−1uLM(t, x) ¿ C1

L
WLM × TLXM = C1 WLM × (T∂T )−1TLXM .

(8.4)

Proof. (i) The invertibility of Λ follows by the modified Poincaré condition (5.3).
Since the matrix representation of Λ−1 is diagonal, Λ−1∆ is nilpotent again.
These observations imply the invertibility of P = Λ + ∆.

(ii) We introduce a norm of uLM(t, x) ∈ C[t]L[x]M by

||uLM || := inf{C > 0 ; uLM(t, x) ¿ CTLXM}.(8.5)

Then by the condition (5.3), the operator norm of the inverse Λ−1 is estimated
by ||Λ−1|| ≤ 1/(C0L) where C0 is the constant in (5.3). Furthermore, we can
estimate the operator norm of ∆ by ||∆|| ≤ max{|δ1|, · · · , |δd−1|}L. Here we
recall that we may assume that |δj| are as small as we want. Therefore we may
assume that ||Λ−1∆|| ≤ (C0)

−1 max{|δ1|, · · · , |δd−1|} ≤ 1/2. By this choice of
{δj}, the operator norm of P−1 = (I − Λ−1∆)−1Λ−1 is estimated by

||P−1|| ≤ ||Λ−1||
1− ||Λ−1∆|| ≤

2

C0L
.

Therefore, it is enough to take C1 = 2/C0. ¤

Next, we shall prove the convergence of the formal solution w(t, x). We put
U(t, x) = Pw(t, x) as a new unknown function. Then U(t, x) satisfies the follow-
ing equation:

{
I −∑d

i,j=1
αij(x)ti∂tjP

−1 − η(x)P−1
}

U(8.6)

=
∑

|α|=K

ζα(x)tα + gK+1(t, x, P−1U, ∂tP
−1U, ∂xP

−1U).

By Lemma 8.1, (ii), if a majorant relation U(t, x) ¿ W (T, X) holds, then we
have the following majorant relations:

• ∑d

i,j=1
αij(x)ti∂tjP

−1U ¿ C1

(∑d

i,j=1
|αij|(X)

)
W,

• η(x)P−1U ¿ C1|η|(X)W,

• ∑
|α|=K

ζα(x)tα ¿
(∑

|α|=K
|ζα|(X)

)
TK ,

• gK+1(t, x, P−1U, ∂tP
−1U, ∂xP

−1U)
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¿ |gK+1|(T,X, C1W,C1W/T, C1∂X(T∂T )−1W ),

where T = (T, T, . . . , T ) ∈ Cd and X = (X,X, . . . , X) ∈ Cn. Here |f |(x) and
|gK+1|(t, x, u, τ, ξ, η) are defined as follows:

For a formal power series f(x) =
∑

fαxα, we define |f |(x) =
∑ |fα|xα, and for

gK+1(t, x, u, τ, ξ) =
∑

gαpqr(x)tαupτ qξr, we define

|gK+1|(t, x, u, τ, ξ) =
∑ |gαpqr|(x)tαupτ qξr.

Let us consider the following equation which is a majorant equation for the
equation (8.6):





W (T,X) = Z(X)TK

+GK+1

(
T, X, C1W,

{
C1W

T

}
,
{
C1∂X(T∂T )−1W

})
,

W (T,X) = O(TK),

(8.7)

where Z(X) = P (X)
∑
|α|=K |ζα|(X) (P (X) is defined below), and

GK+1(T, X, u, τ, ξ) = P (X)|gK+1|(T,X, u, τ, ξ)

with

P (X) =
(
1− C1

∑d

i,j=1
|αij|(X)− C1|η|(X)

)−1

∈ C{X}.
By this construction of the equation, it is easily examined that U(t, x) ¿

W (T, X).
We take majorant functions of Z(X) and GK+1 by

Z(X) ¿ A

(R−X)K
=: Q(X),(8.8)

GK+1(T, X, u, τ, ξ)(8.9)

¿ ∑

|α|+Kp+(K−1)|q|+K|r|≥K+1

Gαpqr

(R−X)|α|+p+|q|+|r|T
|α|upτ qξr

=: RK+1(T,X, u, τ, ξ).

Then we consider the following equation.





V (T, X) = Q(X)TK

+RK+1

(
T, X,C1V,

{
C1V

T

}
,
{
C1∂X(T∂T )−1V

})
,

V (T, X) = O(TK).

(8.10)

By this construction of the majorant equation (8.10), we have

U(t, x) ¿ W (T, X) ¿ V (T, X).
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We substitute V (T, X) =
∑

L≥K VL(X)TL into (8.10). Then we obtain the
following recurrent formulas:

VK(X) =
A

(R−X)K
= Q(X),(8.11)

and for L ≥ K + 1

VL(X) =
∑

|α|+Kp+(K−1)|q|+K|r|≥K+1

GαpqrC
p+|q|+|r|
1

(R−X)|α|+p+|q|+|r|(8.12)

×∑′ p∏

l=1

VLl
(X)

|q|∏

l=1

VMl
(X)

|r|∏

l=1

N−1
l ∂XVNl

(X),

where the summation
∑′ is taken over

|α|+
p∑

l=1

Ll +
|q|∑

l=1

(Ml − 1) +
|r|∑

l=1

Nl = L.(8.13)

By using these formulas we can prove the following lemma.

Lemma 8.2. The coefficients {VL(X)}L≥K are given by

VL(X) =
7L−6K∑

j=K

VL,j

(R−X)j
, L ≥ K.(8.14)

The proof is done by the same way with Lemma 6.1, so we omit it.

Thus we see that the formal solution V (T, X) of (8.10) is written by

V (T,X) =
∑

L≥K

7L−6K∑

j=K

VL,j

(R−X)j
TL,

and further we see that ∂X(T∂T )−1V (T, X) is majorized by

∂X(T∂T )−1V (T, X) =
∑

L≥K

7L−6K∑

j=K

j

L

VL,j

(R−X)j+1
TL ¿ 7

R−X
V (T, X).

We finally obtain the following majorant functional equation:

Y =
A

(R−X)K
TK + RK+1

(
T, X, C1Y,

{
C1Y

T

}
,
{

7C1

R−X
Y

})
,

(8.15)

with Y = Y (T, X) = O(TK). By these procedures of constructing the equation
(8.15), we get the following majorant relations between the uniquely determined
formal solutions.

Y (T, X) À V (T, X) À W (T,X) À U(t, x).
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At the end, we notice that the convergent of Y (T,X) follows from the classi-
cal implicit function theorem which assures the unique existence of convergent
solution of (8.15).

This completes the second proof. ¤
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