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Abstract

A staggered Runge-Kutta (staggered RK) scheme is the time integration
Runge-Kutta type scheme based on staggered grid, which was proposed by
Ghrist and Fornberg and Driscoll in 2000. Afterwords, Vewer presented
efficiency of the scheme for linear and semilinear wave equations through
numerical experiments. We study stability and convergence properties of this
scheme for semilinear wave equations. In particular, we prove convergence
of a fully discrete scheme obtained by applying the staggered RK scheme to
the MOL approximation of the equation.
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1. Introduction

We consider initial-boundary value problems of the form

∂2u

∂t2
= D∆u+ g(t, x, u), 0 ≤ t ≤ T, x ∈ Ω,

Φbu = ϕ(t, x), 0 ≤ t ≤ T, x ∈ ∂Ω,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), x ∈ Ω.
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Here u(t, x) is an R-valued unknown function, Ω is a bounded domain in
Ri, i = 1, 2, 3 with the boundary ∂Ω, ∆ is the Laplace operator, D is a pos-
itive constant, and g(x, t, u) is an R-valued given function. Also, Φb is a
boundary operator and u0(x), v0(x), ϕ(t, x) are given functions.
Many important wave equations, such as the Klein-Gordon equation (see,
e.g., [10], [19]) and the nonlinear Klein-Gordon equation (see [17]), are rep-
resented in this form. To apply numerical schemes, we may use the form

∂u

∂t
= v,

∂v

∂t
= D∆u+ g(t, x, u), 0 ≤ t ≤ T, x ∈ Ω,

Φbu = ϕ(t, x), 0 ≤ t ≤ T, x ∈ ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω.

(1)

A well-known approach in the numerical solution of wave problems in partial
differential equations (PDEs) is the method of lines (MOL) (see [12]). In
this approach, PDEs are first discretized in space by finite difference or finite
element techniques to be converted into a system of ordinary differential
equations (ODEs). Let Ωh ⊂ Ω̄ be a grid with mesh width h > 0, and Vh be
the vector space of all functions from Ωh to R. An MOL approximation of
(1) is written in the form

duh(t)

dt
= vh(t),

dvh(t)

dt
= DLhuh(t) + ϕh(t) + gh(t, uh(t)). (2)

Here uh, vh are approximation functions of u and v such that uh(t), vh(t) ∈
Vh for t ∈ [0, T ], Lh is a difference approximation of ∆, gh is a function from
[0, T ]×Vh to Vh defined by gh(t, uh)(x) = g(t, x, uh(t)), x ∈ Ωh, for t ∈ [0, T ],
uh ∈ Vh, and ϕh(t) is a function determined from the boundary condition.
In order to get the stable numerical solution of (2), Ghrist et al. introduced
time-staggered schemes which is based on the idea of the staggered grid.
The staggered grid is used to get explicit stable schemes in many fields. For
example, the FDTD scheme (see [18]) in the electromagnetic field analysis
and the SMAC scheme (see, e.g., [3], [9]) in the fluid calculation use stag-
gered grid in space discretization. To the contrary, Ghrist et al. [5] consider
staggered grid in time discretization and introduced the staggered Runge-
Kutta (staggered RK) schemes. In particular, they proposed a forth-order,
explicit, staggered RK scheme (RKS4) and studied stability and convergence
of staggered RK schemes applied to ODEs. Vewer. (see, [15], [16]) presented
efficiency of RKS4 for linear and semilinear wave equations through numeri-
cal experiments. As is well known, RK approximations for PDEs suffer from
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order reduction phenomena. That is, the order of time-stepping in the fully
discrete scheme is, in general, less than that of the underlying RK scheme
(see, e.g., [8], [11], [14] on order reduction phenomena of RK schemes in the
PDE context). Vewer observes the order of RKS4 is three, while that of the
classical RK scheme is two. He also gives an analysis of this phenomenon.
In this paper, we study stability and convergence of staggered RK schemes
for (2). Specifically, we introduce a new stability condition which guaran-
tees the boundedness of numerical solutions and prove convergence of the
schemes.
The paper is organized as follows. In the next section (Section 2), we in-
troduce some notation, including the form of the staggered RK schemes.
In Section 3, we prove a theorem which describes the boundedness of the
numerical solution. In Section 4, we prove a theorem which describes con-
vergence of the scheme applied to (2). In Section 5, we estimate the order of
convergence by using a numerical experiment.

2. Preliminaries

Let τ > 0 be a step size. We define the step points tn = nτ , tn+1/2 =
(n+ 1/2)τ for integer n ≥ 0.
As [5], for positive integer s, a staggered RK scheme for ODEs of the form{

u′ = f(t, v)
v′ = g(t, u)

, 0 ≤ t ≤ T, u, v ∈ R (3)
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is given as

vn+1/2,1 = vn+1/2,

un,i = un + τ

i∑
j=1

bi,jf(tn+1/2 + ejτ, vn+1/2,j), i = 1, · · · , s− 1,

vn+1/2,i = vn+1/2 + τ
i−1∑
j=1

ai,jg(tn + cjτ, un,j), i = 2, · · · , s,

un+1 = un + τ
s∑

i=1

dif(tn+1/2 + eiτ, vn+1/2,i),

(4)

u′n+1,1 = un+1,

v′n+1/2,i = vn+1/2 + τ
i∑

j=1

b′i,jg(tn+1 + e′jτ, u
′
n+1,j), i = 1, · · · , s− 1,

u′n+1,i = un+1 + τ

i−1∑
j=1

a′i,jf(tn+1/2 + c′jτ, v
′
n+1/2,j), i = 2, · · · , s,

vn+3/2 = vn+1/2 + τ
s∑

i=1

d′ig(tn+1 + e′iτ, u
′
n+1,i)

(5)

and the abscissae

ci =
i∑

j=1

bi,j, c
′
i =

i∑
j=1

b′i,j, i = 1, . . . , s− 1,

ei =
i−1∑
j=1

ai,j, e
′
i =

i−1∑
j=1

a′i,j, i = 2, . . . , s.

(6)

Here ai,j, bi,j, a
′
i,j, b

′
i,j, ci, c

′
i, di, d

′
i, ei, e

′
i are coefficients, e1 = e′1 = 0,

un,i, vn+1/2,i, u
′
n+1,i, v

′
n+1/2,i are intermediate variables, un and vn+1/2 are

approximate values of u(tn) and v(tn+1/2), respectively.
We describe the algorithm of the staggered RK scheme. In the first step, we
calculate u1 from u0 and v1/2 by (4), where v1/2 is produced by given initial
values u0(x) = u0, v0(x) = v0, x ∈ Ωh and using the Runge-Kutta scheme.
The next step, we calculate v3/2 from v1/2 and u1 by (5). By this way, we
calculate un+1 from un and vn+1/2 by (4), and vn+3/2 from vn+1/2 and un+1
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vn+1/2

un+1

vn+3/2
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· · ·

Figure 1: The approximation values of staggered RK schemes

by (5).
Fig.1 shows this process. The solid arrow describes the process of calculating
un+1 and the dashed arrow describes the process of calculating vn+3/2. All
the approximate values are calculated explicitly.
We introduce some notation. The m×m identity matrix will be denoted by
Im. We use the standard symbol 1 = (1, · · · , 1)T ∈ Rs.
To estimate stability of the scheme, we use the following linear test equation:{

u′(t) = v(t)
v′(t) = −ω2u(t)

, ω ∈ R≥0 (7)

with R≥0 = {x;x ≥ 0, x ∈ R}.
Applying (4)-(5) to (7), we get

Vn+1/2 = 1vn+1/2 − τω2AUn,

Un = 1un + τBVn+1/2,

un+1 = un + τdVn+1/2,

U ′
n+1 = 1un+1 + τA′V ′

n+1/2,

V ′
n+1/2 = 1vn+1/2 − τω2B′U ′

n+1,

vn+3/2 = vn+1/2 − τω2d′U ′
n+1,

(8)
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where

A =


0
a2,1 0 O
...

. . . . . .

as,1 · · · as,s−1 0

 , B =


b1,1

b2,1 b2,2 O
...

...
. . .

bs,1 bs,2 · · · bs,s

 , d =


d1

d2
...
ds


T

,

A′ =


0
a′2,1 0 O
...

. . . . . .

a′s,1 · · · a′s,s−1 0

 , B′ =


b′1,1

b′2,1 b′2,2 O
...

...
. . .

b′s,1 b′s,2 · · · b′s,s

 , d =


d′1
d′2
...
d′s


T

,

Vn+1/2 = (vn+1/2,1, vn+1/2,2, · · · , vn+1/2,s)
T , Un = (un,1, un,2, · · · , un,s)

T ,

V ′
n+1/2 = (v′n+1/2,1, v

′
n+1/2,2, · · · , v′n+1/2,s)

T ,

U ′
n+1 = (u′n+1,1, u

′
n+1,2, · · · , u′n+1,s)

T .

Eliminating Vn+1/2, Un, U
′
n+1 and V ′

n+1/2, we can rewrite (8) as(
un+1

vn+3/2

)
=

(
ω 0
0 1

)−1

R(τω)

(
ω 0
0 1

)(
un

vn+1/2

)
. (9)

For θ ≥ 0, R(θ) is given by

R(θ) =

(
1 + r1,1(θ)1 r1,2(θ)1

r′1,2(θ)1(r1,1(θ)1 + 1) 1 + r′1,2(θ)1r1,2(θ)1 + r′1,1(θ)1

)
(10)

with

r1,1(θ) = −θ2d(Is + θ2AB)−1A, r1,2(θ) = θd(Is + θ2AB)−1,

r′1,1(θ) = −θ2d′(Is + θ2A′B′)−1A′, r′1,2(θ) = −θd′(Is + θ2A′B′)−1.

Noticing (θ2AB)s = O and (θ2A′B′)s = O, we get

(Is + θ2AB)−1 =
s−1∑
i=0

(−θ2AB)i, (Is + θ2A′B′)−1 =
s−1∑
i=0

(−θ2A′B′)i
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with (−θ2AB)0 = (−θ2A′B′)0 = Is. Then we rewrite the coefficients in (10)
as

r1,1(θ) = d
s−1∑
i=0

(−θ2)i+1(AB)iA, r1,2(θ) = d
s−1∑
i=0

(−θ2)iθ(AB)i,

r′1,1(θ) = d′
s−1∑
i=0

(−θ2)i+1(A′B′)iA′, r′1,2(θ) = −d′
s−1∑
i=0

(−θ2)iθ(A′B′)i.

(11)

Let λ± = λ±(θ) be the eigenvalues of (10). We know these eigenvalues are
roots of

λ2 − (2 + r1,1(θ)1 + r′1,1(θ)1 + r1,2(θ)1r
′
1,2(θ)1)λ

+(1 + r1,1(θ)1)(1 + r′1,1(θ)1) = 0.
(12)

Under this notation, we define the stability interval of the scheme.

Definition 1. The stability interval S of a staggered RK scheme (4)-(5) is
defined by a connected closed interval of {θ; |λ±(θ)| ≤ 1, θ ≥ 0}, which
includes 0.

The simplest example of staggered RK schemes is the (staggered) leapfrog
scheme (see, e.g., [15])

un+1 = un + τf(tn+1/2, vn+1/2),

vn+3/2 = vn+1/2 + τg(tn+1, un+1).
(13)

This scheme is of order 2 for ODEs. In this case, the scheme for (7) is reduced
to (9) with

r1,1(θ)1 = r′1,1(θ)1 = 0, r1,2(θ)1 = θ, r′1,2(θ)1 = −θ. (14)

Substituting (14) into (12), we get λ2 − (2− θ2)λ+ 1 = 0. Since the discrim-
inant of λ2 − (2− θ2)λ+ 1 = 0 is D(θ) = (2− θ2)2 − 4, it is easy to see that
|λ±(θ)| ≤ 1 iff D(θ) ≤ 0. S is estimated by using the smallest positive root
of −2 = 2 − θ2, i.e. S = [0, 2].
RKS4 is another example of staggered RK schemes (see, [5]). This scheme
is given by taking

A = A′ =

 0 0 0
−1 0 0
0 1 0

 , B = B′ =

0 0 0
1 0 0
0 0 0

 , d = d′ =

(
11

12
,

1

24
,

1

24

)
.

(15)

7



This scheme is of order 4 for ODEs. In this case, the scheme for (7) is reduced
to (9) with

r1,1(θ)1 = r′1,1(θ)1 = 0, r1,2(θ)1 = θ − θ3

24
, r′1,2(θ)1 = −θ +

θ3

24
. (16)

Substituting (16) into (12), we get

λ2 −
{

2 −
(
θ − θ3/24

)2}
λ+ 1 = 0.

In [15], S is estimated by using the smallest positive root of −2 = 2 − (θ −
θ3/24)2, i.e. S = [0, 2(21/3 + 22/3)].

3. Stability of staggered RK schemes

We use (9) to estimate the stability of the staggered RK scheme. In
order to prove convergence of the staggered RK scheme in the next section,
we have to evaluate ||R(θ)n||2 of (10), where || · ||2 is the Euclidean norm on
R2 and the corresponding operator norm for 2 × 2 matrices. To accomplish
this evaluation, we define another stability interval.
Let γ0 > 0 (γ0 ∈ S) be the smallest positive root of

D(θ) = r1,2(θ)1r
′
1,2(θ)1{r1,2(θ)1r

′
1,2(θ)1 + 4} = 0. (17)

By using this γ0, we define another stability interval S ′ = [0, γ0). It is easy
to see that S ′ is a subset in S. We prove the boundedness of ||R(θ)n||2 by
using following hypotheses for the staggered RK scheme (4)-(5):

(H1) For θ ∈ S ′, 0 ≤ −r′1,2(θ)1 ≤ r1,2(θ)1 ≤ −γ0r
′
1,2(θ)1.

(H2) For θ ∈ S ′, D(θ) ≤ 0.

(H3) The polynomials r1,1(θ)1 and r′1,1(θ)1 are 0.

(H4) The following order condition holds: d1 = d′1 = 1.

The leapfrog scheme (13) and RKS4 (15) satisfy these hypotheses. Substi-
tuting (14) into (17), we can take γ0 = 2 and S ′ = [0, 2) for the leapfrog
scheme. By (14), the leapfrog scheme satisfies (H1)-(H3). (H4) is checked by
using (13). Similarly, we can take γ0 = 2

√
6 and S ′ =

[
0, 2

√
6
)

for RKS4, by
substituting (14) and (16) into (17). By (16), RKS4 satisfies (H1)-(H3). By
(15), (H4) holds.
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Theorem 3.1. Let γε > 0 be γε < γ0. Assume that the coefficients ai,j, a
′
i,j,

bi,j, b
′
i,j, ci, c

′
i, di, d

′
i, ei, e

′
i in (4)-(5) satisfy (H1)-(H4). Then, there is a

positive constant C such that

||R(θ)n||2 ≤ C (18)

holds for any 0 ≤ θ ≤ γε and n ∈ N. Here R(θ) is the matrix of (10).

Proof. By (H3), we can rewrite

R(θ) =

(
1 r1,2(θ)1

r′1,2(θ)1 1 + r1,2(θ)1r
′
1,2(θ)1

)
. (19)

If θ = 0, R(θ) is the identity matrix. Then (18) holds for C = 1. Let θ > 0.
We can diagonalize (19) as

R(θ) = Q(θ)

(
λ+(θ) 0

0 λ−(θ)

)
Q(θ)−1. (20)

Here

λ±(θ) = λ± =
2 + r1,2(θ)1r

′
1,2(θ)1 ±

√
D(θ)

2
, (21)

Q(θ) =
1

r′1,2(θ)1

(
λ+ − (1 + r1,2(θ)1r

′
1,2(θ)1) λ− − (1 + r1,2(θ)1r

′
1,2(θ)1)

r′1,2(θ)1 r′1,2(θ)1

)
,

Q(θ)−1 =
1

λ+ − λ−

(
r′1,2(θ)1 −λ− + (1 + r1,2(θ)1r

′
1,2(θ)1)

−r′1,2(θ)1 λ+ − (1 + r1,2(θ)1r
′
1,2(θ)1)

)
.

Since θ ∈ S, we have |λ±| ≤ 1. By (H2), the adjoint matrices of Q(θ) and
Q(θ)−1 are

Q(θ)∗ =
1

r′1,2(θ)1

(
λ− − (1 + r1,2(θ)1r

′
1,2(θ)1) r′1,2(θ)1

λ+ − (1 + r1,2(θ)1r
′
1,2(θ)1) r′1,2(θ)1

)
,

(Q(θ)−1)∗ =
1

λ− − λ+

(
r′1,2(θ)1 −r′1,2(θ)1

−λ+ + (1 + r1,2(θ)1r
′
1,2(θ)1) λ− − (1 + r1,2(θ)1r

′
1,2(θ)1)

)
.

Putting

a(θ) = {λ− − (1 + r1,2(θ)1r
′
1,2(θ)1)}{λ+ − (1 + r1,2(θ)1r

′
1,2(θ)1)},

b±(θ) = {λ± − (1 + r1,2(θ)1r
′
1,2(θ)1)}2 + (r′1,2(θ)1)2,

c(θ) = −r′1,2(θ)1{λ+ + λ− − 2(1 + r1,2(θ)1r
′
1,2(θ)1)},

9



we have

Q(θ)∗Q(θ) =
1

(r′1,2(θ)1)2

(
a(θ) + (r′1,2(θ)1)2 b−(θ)

b+(θ) a(θ) + (r′1,2(θ)1)2

)
,

(Q(θ)−1)∗(Q(θ)−1) =
−1

{λ− − λ+}2

(
2r′1,2(θ)

2 c(θ)
c(θ) 2a(θ)

)
.

Then, the eigenvalues of Q(θ)∗Q(θ) and (Q(θ)−1)∗(Q(θ)−1) are

a(θ) + (r′1,2(θ)1)2 ±
√
b−(θ)b+(θ)

(r′1,2(θ)1)2
,

a(θ) + (r′1,2(θ)1)2 ±
√

(a(θ) + (r′1,2(θ)1)2)2 − 4a(θ)(r′1,2(θ)1)2 + c(θ)2

−{λ− − λ+}2
,

respectively. Putting

α(θ) = −r1,2(θ)1r
′
1,2(θ)1 + (r′1,2(θ)1)2,

β(θ) = r′1,2(θ)1(λ+ − λ−)i, (22)

these eigenvalues are rewritten as

α(θ) ±
√
α(θ)2 − β(θ)2

(r2,1(θ)1)2
,

(r2,1(θ)1)2
{
α(θ) ±

√
α(θ)2 − β(θ)2

}
β(θ)2

,

respectively. Then, by (20), we have

||R(θ)n||2 ≤ ||Q(θ)||2
∣∣∣∣Q(θ)−1

∣∣∣∣
2

=

∣∣∣∣∣α(θ) +
√
α(θ)2 − β(θ)2

β(θ)

∣∣∣∣∣ ≤ 2

∣∣∣∣α(θ)

β(θ)

∣∣∣∣+ 1.

(23)

Substituting (21) into (22) and using (H1), we have∣∣∣∣α(θ)

β(θ)

∣∣∣∣ =
|r1,2(θ)1 − r′1,2(θ)1|√

−r′1,2(θ)1r1,2(θ)1(r1,2(θ)1r′1,2(θ)1 + 4)

≤
(1 + γ0)r

′
1,2(θ)1

r′1,2(θ)1
√
r1,2(θ)1r′1,2(θ)1 + 4

10



for any θ ∈ [0, γε]. By (H1) and (H2), we get −4 ≤ r1,2(θ)1r
′
1,2(θ)1 ≤ 0.

As r1,2(θ)1r
′
1,2(θ)1 is a polynomial of θ, there exits a minimum value of

r1,2(θ)1r
′
1,2(θ)1+4 in [0, γε]. Let γ1 be the value of θ that gives the minimum

value of r1,2(θ)1r
′
1,2(θ)1 + 4. We get∣∣∣∣α(θ)

β(θ)

∣∣∣∣ ≤ 1 + γ0√
r1,2(γ1)1r2,1(γ1)1 + 4

.

Then, this, together with (23), gives (18) with C =
2(1 + γ0)√

r1,2(γ1)1r2,1(γ1)1 + 4
+

1. �

4. Convergence of fully discrete schemes

We assume the following hypotheses for Lh:

Lh is a negative definite symmetric matrix.

There exits h0 > 0 and C3 > 0 such that any eigenvalues of Lh is less
than −C3 for any h < h0.

Form these hypotheses, we can take a positive definite symmetric matrix Wh

satisfying −DLh = W 2
h ; Any eigenvalues of W−1

h is less than 1/
√
DC3 for

any h < h0.
Using Wh, we can rewrite (2) as

duh(t)

dt
= vh(t),

dvh(t)

dt
= −W 2

huh(t) + ϕh(t) + gh(t, uh(t)). (24)

In this paper, || · ||Wh
denotes a discrete energy norm (see, e.g., [1], [2]), given

by

||(uh, vh)
T ||2Wh

= ||Whuh||2 + ||vh||2 for any uh, vh ∈ Vh, (25)

where || · || denotes the discrete version of the L2-norm in Vh, given by

||uh||2 = h
∑
x∈Ωh

{(uh)x}2

and the corresponding operator norm for m×m matrices with m = dimVh.
We define the spatial truncation error αh(t) by

αh(t) = v′
h(t) +W 2

huh(t) − ϕh(t) − gh(t,uh(t)), (26)

11



where uh(t), vh(t) are Vh-valued functions obtained by restricting the vari-
able x of the exact solutions u, v onto Ωh.
By applying (4)-(5) to (24), we obtain the following scheme for the problem
(1):

Vn+1/2 = 1′vn+1/2 + τA{−W 2
h Un + ϕh(tn) + gn},

Un = 1′un + τBVn+1/2,

un+1 = un + τdVn+1/2,

U ′
n+1 = 1′un+1 + τA′V ′

n+1/2,

V ′
n+1/2 = 1′vn+1/2 + τB′{−W 2

h U ′
n+1 + ϕh(tn+1) + gn+1},

vn+3/2 = vn+1/2 + τd′{−W 2
h U ′

n+1 + ϕh(tn+1) + gn+1}.

(27)

Here 1′ denotes 1 ⊗ Im for 1 = (1, · · · , 1)T ∈ Rs,

A = A⊗ Im, B = B ⊗ Im, d = d⊗ Im, A′ = A′ ⊗ Im, B′ = B′ ⊗ Im,

Vn+1/2 = (vT
n+1/2,1,v

T
n+1/2,2, · · · ,vT

n+1/2,s)
T , Un = (uT

n,1,u
T
n,2, · · · ,uT

n,s)
T ,

V ′
n+1/2 = (v′T

n+1/2,1,v
′T
n+1/2,2, · · · ,v′T

n+1/2,s)
T ,

U ′
n+1 = (u′T

n+1,1,u
′T
n+1,2, · · · ,u′T

n+1,s)
T ,

ϕh(tn) = (ϕh(tn,1)
T , ϕh(tn,2)

T , · · · , ϕh(tn,s)
T )T , d′ = d′ ⊗ Im,

gn = (gh(tn,1,un,1)
T , gh(tn,2,un,2)

T , · · · , gh(tn,s,un,s)
T )T , Wh = Is ⊗Wh

with ⊗ standing for the Kronecker product (see, e.g., [4]), un,i, vn+1/2,i, u′
n+1,i

and v′
n+1/2,i are intermediate variables, tn,j := tn + cjτ , tn+1,j := tn+1 + c′jτ ,

un and vn+1/2 are approximate values of uh(tn) and vh(tn+1/2), respectively.
For some s-dimensional vector a = (a1, · · · , as)

T , we define ai = (ai
1, · · · , ai

s)
T .

In addition to the (H1)-(H4), we assume the following hypothesis for the
staggered RK scheme (4)-(5):

(H5) The following order conditions hold:

(A1)2 + A1 = 2AB1, (B1)2 −B1 = 2BA1,

(A′1)2 + A′1 = 2A′B′1, (B′1)2 −B′1 = 2B′A′1,

dA1 = d′A′1 = 0.

The leapfrog scheme and RKS4 satisfy (H5), which is checked by (13) and
(15).
We assume the following condition which gives the restriction for τ and h.

12



(H6) τρ(Wh) ∈ S ′. Here ρ(Wh) is a spectral radius of Wh.

We put the coefficients of (4)-(5) as

ζ =
4(A1)3 + 6(A1)2 + 3(A1)

24
− A(B1)2

2
,

η =
4(B1)3 − 6(B1)2 + 3(B1)

24
− B(A1)2

2
,

ζ ′ =
4(A′1)3 + 6(A′1)2 + 3(A′1)

24
− A′(B′1)2

2
,

η′ =
4(B′1)3 − 6(B′1)2 + 3(B′1)

24
− B′(A′1)2

2
.

Moreover, we assume the following condition for the problem (1):
The exact solution u(t, x) is of class C4 with respect to t, g(t, x, u) is of class
C3 with respect to t, u and (each component of) the derivative ∂g/∂u is
bounded for (t, x, u) ∈ [0, T ] × Ω × R.
For simplicity, we consider a step size of the form τ = T/N with positive
integer N . Then, we have the following theorem.

Theorem 4.1. Assume that the coefficients ai,j, a
′
i,j, bi,j, b

′
i,j, ci, c

′
i, di, d

′
i,

ei, e
′
i in (4)-(5) satisfy (H1)-(H5) and τ satisfies (H6). Then, there is a

positive constant C1 such that∣∣∣∣∣∣(un − uh(tn),vn+1/2 − vh(tn+1/2)
)T ∣∣∣∣∣∣

Wh

≤ C1

(
τ 2 + max

0≤t≤T
||αh(t)||

)
(28)

holds.

Proof. Put

Vh(tn+1/2) = (vh(tn+1/2,1)
T ,vh(tn+1/2,2)

T , · · · ,vh(tn+1/2,s)
T )T ,

Uh(tn) = (uh(tn,1)
T ,uh(tn,2)

T , · · · ,uh(tn,s)
T )T ,

Vh(t
′
n+1/2) = (vh(t

′
n+1/2,1)

T ,vh(t
′
n+1/2,2)

T , · · · ,vh(t
′
n+1/2,s)

T )T ,

gh(tn) = (gh(tn,1,uh)
T , gh(tn,2,uh)

T , · · · , gh(tn,s,uh)
T )T ,

where tn+1/2,j := tn+1/2 + ejτ, t
′
n+1/2,j := tn+1/2 + e′jτ, j = 1, · · · , s. Re-

placing Un, U ′
n+1, Vn+1/2, V ′

n+1/2, un and vn+1/2 in the scheme (27) with

13



Uh(tn), Uh(tn+1), Vh(tn+1/2), Vh(t
′
n+1/2), uh(tn) and vh(tn+1/2), we obtain

the recurrence relation

Vh(tn+1/2) = 1′vh(tn+1/2) + τA{−W 2
h Uh(tn) + ϕh(tn) + gh(tn)} + rn+1/2,

Uh(tn) = 1′uh(tn) + τBVh(tn+1/2) + rn,

uh(tn+1) = uh(tn) + τdVh(tn+1/2) + ρn,

Uh(tn+1) = 1′uh(tn+1) + τA′Vh(t
′
n+1/2) + rn+1,

Vh(t
′
n+1/2) = 1′vh(tn+1/2) + τB′{−W 2

h Uh(tn+1) + ϕh(tn+1) + gh(tn+1)} + r′
n+1/2,

vh(tn+3/2) = vh(tn+1/2) + τd′{−W 2
h Uh(tn+1) + ϕh(tn+1) + gh(tn+1)} + ρn+1/2

(29)

with the residuals

rn = (rT
n,1, r

T
n,2, · · · , rT

n,s)
T , r′

n+1/2 = (r′
T
n+1/2,1, r

′T
n+1/2,2, · · · , r′

T
n+1/2,s)

T ,

ρn and ρn+1/2. By (6), (26), (H4) and (H5), these residuals are expanded as

rn+1/2 = τ 3ζv
(3)
h (tn+1/2) + τAαh(tn) + O(τ 4),

rn = τ 3ηu
(3)
h (tn) + O(τ 4),

ρn =
τ 3

2

(
1

12
− d(A1)2

)
u

(3)
h (tn) + O(τ 4),

rn+1 = τ 3ζ ′u
(3)
h (tn+1) + O(τ 4),

r′
n+1/2 = τ 3η′v

(3)
h (tn+1/2) + τB′αh(tn+1) + O(τ 4),

ρn+1/2 =
τ 3

2

(
1

12
− d′(A′1)2

)
v

(3)
h (tn+1/2) + τd′αh(tn+1) + O(τ 4).

(30)

Here

αh(tn) = (αh(tn,1)
T , αh(tn,2)

T , · · · , αh(tn,s)
T )T ,

ζ = ζ ⊗ Im, η = η ⊗ Im, ζ ′ = ζ ′ ⊗ Im, η′ = η′ ⊗ Im,

14



O(τ 4) denotes a term whose component for each x ∈ Ωh is of O(τ 4). Sub-
tracting (27) from (29), we obtain

δn+1/2 = 1′εn+1/2 − τA(W 2
h δn − gh(tn) + gn) + rn+1/2,

δn = 1′εn + τBδn+1/2 + rn,

εn+1 = εn + τdδn+1/2 + ρn,

δ′
n+1 = 1′εn+1 + τA′δ′

n+1/2 + rn+1,

δ′
n+1/2 = 1′εn+1/2 − τB′(W 2

h δ′
n+1 − gh(tn+1) + gn+1) + r′

n+1/2,

εn+3/2 = εn+1/2 − τd′(W 2
h δ′

n+1 − gh(tn+1) + gn+1) + ρn+1/2.

Here

δn+1/2 = Vh(tn+1/2) − Vn+1/2, δn = Uh(tn) − Un,

δ′
n+1 = Uh(tn+1) − U ′

n+1, δ′
n+1/2 = Vh(t

′
n+1/2) − V ′

n+1/2

for the errors

εn = uh(tn) − un, εn+1/2 = vh(tn+1/2) − vn+1/2.

Let Jn be Jn = diag(Jn,1, Jn,2, · · · , Jn,s) and Jn,i be a function from Ωh to R
whose value for x ∈ Ωh is

Jn,i(x) =

∫ 1

0

∂g

∂u
(tn,i, x, (1 − θ)un,i(x) + θuh(tn,i, x))dθ.

By the assumption that ∂g/∂u is bounded, there is a constant γ3 such that

||Jn,iv|| ≤ γ3||v|| for any v ∈ Vh, (31)

where the multiplication Jn,iv is component-wise for x ∈ Ωh. Then we obtain

δn+1/2 = 1′εn+1/2 − τA(W 2
h − Jn)δn + rn+1/2,

δn = 1′εn + τBδn+1/2 + rn,

εn+1 = εn + τdδn+1/2 + ρn,

δ′
n+1 = 1′εn+1 + τA′δ′

n+1/2 + rn+1,

δ′
n+1/2 = 1′εn+1/2 − τB′(W 2

h − Jn+1)δ
′
n+1 + r′

n+1/2,

εn+3/2 = εn+1/2 − τd′(W 2
h − Jn+1)δ

′
n+1 + ρn+1/2.
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Eliminating δn, δn+1/2, δ′
n+1/2 and δn+1, we have(

Whεn+1

εn+3/2

)
= Rn

(
Whεn

εn+1/2

)
+ Mn

(
Whξn
ξn+1/2

)
. (32)

Here

Rn =

(
Im +R1,11

′ R1,21
′

R′
1,21

′R1,11
′ +R′

1,21
′ Im +R′

1,21
′R1,21

′ +R′
1,11

′

)
, Mn =

(
Im O

R′
1,21

′ Im

)
,

R1,1 = −τ 2d(I + τ 2A(W 2
h − Jn)B)−1A(W 2

h − Jn),

R1,2 = τd(I + τ 2A(W 2
h − Jn)B)−1Wh,

R′
1,1 = −τ 2d′(W 2

h − Jn+1)(I + τ 2A′B′(W 2
h − Jn+1))

−1A′,

R′
1,2 = −τd′(W 2

h − Jn+1)(I + τ 2A′B′(W 2
h − Jn+1))

−1W−1
h ,

Whξn = R1,1Whrn +R1,2rn+1/2 +Whρn,

ξn+1/2 = R′
1,2Whrn+1 +R′

1,1r
′
n+1/2 + ρn+1/2

(33)

with I = Is ⊗ Im.
In order to prove the convergence, we introduce new variables following [6]
and [15]. As in the proof of Lemma II.2.3 in [6] and 5.3 in [15], we put(

Whνn

νn+1/2

)
= (R(τWh) − I2m)−1M(τWh)

(
Whψn

ψn+1/2

)
=

(
[d′(I + τ 2A′B′W 2

h )−11′]
−1
W−1

h τ−1ψn+1/2

[d(I + τ 2AW 2
h B)−11′]

−1
W−1

h τ−1Whψn

)
,

(34)

(
Whε̂n

ε̂n+1/2

)
=

(
Whεn

εn+1/2

)
+

(
Whνn

νn+1/2

)
,(

Whξ̂n
ξ̂n+1/2

)
= τM(τWh)

(
Whξ̄n
ξ̄n+1/2

)
− τR̄n

(
Whνn

νn+1/2

)
+

(
Wh(νn+1 − νn)
νn+3/2 − νn+1/2

)
(35)

and rewrite (32) as(
Whε̂n+1

ε̂n+3/2

)
= Rn

(
Whε̂n

ε̂n+1/2

)
+

(
Whξ̂n
ξ̂n+1/2

)
. (36)
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Here

M(τWh) =

(
Im O

r′1,2(τWh)1
′ Im

)
,

Whψn = r1,1(τWh)Whrn + r1,2(τWh)rn+1/2 +Whρn,

ψn+1/2 = r′1,2(τWh)Whrn+1 + r′1,1(τWh)r
′
n+1/2 + ρn+1/2,

(37)

Whξ̄n = R̄1,1Whrn + R̄1,2rn+1/2,

ξ̄n+1/2 = R̄′
1,21

′Whξn + R̄′
1,2Whrn+1 + R̄′

1,1r
′
n+1/2.

(38)

R̄n is defined as τR̄n = Rn −R(τWh), given by

R̄n =

(
R̄1,11

′ R̄1,21
′

R′
1,21

′R̄1,11
′ + R̄′

1,21
′ R′

1,21
′R̄1,21

′ + R̄′
1,21

′r1,2(τWh)1
′ + R̄′

1,11
′

)
.

Since AW 2
h B = W 2

h AB, A′B′W 2
h = W 2

h A′B′, R̄1,i, R̄
′
1,i, i = 1, 2 are

written as

R̄1,1 = −τd
s−1∑
i=0

(−1)i
{
(τ 2W 2

h AB − τ 2AJnB)i − (τ 2W 2
h AB)i

}
AW 2

h

+ τd
s−1∑
i=0

(τ 2A(Jn − W 2
h )B)iAJn,

R̄1,2 = d

s−1∑
i=0

(−1)i
{
(τ 2W 2

h AB − τ 2AJnB)i − (τ 2W 2
h AB)i

}
Wh,

R̄′
1,1 = −τd′W 2

h

s−1∑
i=0

(−1)i
{
(τ 2W 2

h A′B′ − τ 2A′B′Jn+1)
i − (τ 2W 2

h A′B′)i
}

A′

+ τd′Jn+1

s−1∑
i=0

(τ 2A′B′(Jn+1 − W 2
h ))iA′,

R̄′
1,2 = −d′Wh

s−1∑
i=0

(−1)i
{
(τ 2W 2

h A′B′ − τ 2A′B′Jn+1)
i − (τ 2W 2

h A′B′)i
}

+ d′Jn+1

s−1∑
i=0

(τ 2A′B′(Jn+1 − W 2
h ))iW−1

h .

By (31) and (H6), we can estimate R̄1,i, R̄
′
1,i, i = 1, 2 as

R̄1,i = O(τ), R̄′
1,1 = O(τ), R̄′

1,2 = O(1). (39)
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Substituting (30) into (33) and (38), we get∣∣∣∣∣∣(ξ̄n, ξ̄n+1/2

)T ∣∣∣∣∣∣
Wh

≤ C ′
1

(
τ 2 + max

i=0,1
||αh(tn+i)||

)
(40)

with a positive constant C ′
1.

For θ ∈ S ′, there exit some positive constants γ4, γ
′
4 such that, r1,2(θ)1/θ =

d(Is + θ2AB)−11 > γ4 and −r′1,2(θ)1/θ = d′(Is + θ2A′B′)−11 > γ′4. By (H6),

any eigenvalues of [d(I + τ 2W 2
h AB)−11′]

−1
and [d(I + τ 2W 2

h AB)−11′]
−1

are less than γ4 and γ′4, respectively. Substituting (30) into (37),W−1
h τ−1Whψn

and W−1
h τ−1ψn+1/2 are represented as

W−1
h τ−1Whψn = r1,2(τWh)Aαh(tn) + O(τ 2),

W−1
h τ−1ψn+1/2 = (r′1,1(τWh)B

′ + d′)αh(tn+1) + O(τ 2).
(41)

Substituting (41) into (34), there is a positive constant C ′′
1 such that∣∣∣∣∣∣(νn, νn+1/2

)T ∣∣∣∣∣∣
Wh

≤ C ′′
1

(
τ 2 + max

i=0,1
||αh(tn+i)||

)
. (42)

Since u
(3)
h (tn+1) − u

(3)
h (tn) = O(τ) and v

(3)
h (tn+3/2) − v

(3)
h (tn+1/2) = O(τ), we

get

W−1τ−1Wh(ψn+1 − ψn) = τr1,2(τWh)A {αh(tn+1) − αh(tn)} + O(τ 3),

W−1τ−1(ψn+3/2 − ψn+1/2) = τ(r′1,1(τWh)B
′ + d′) {αh(tn+2) − αh(tn+1)} + O(τ 3).

Thus, by using (35), (40) and (42), there is a positive constant C2 such that∣∣∣∣∣∣∣∣(ξ̂n, ξ̂n+1/2

)T
∣∣∣∣∣∣∣∣

Wh

≤ C2

(
τ 3 + τ max

i=0,1
||αh(tn+i)||

)
. (43)

Moreover, let ωj be the eigenvalues of Wh. Then, by taking the orthogonal
matrix P to be P−1(τWh)P = diag(τωj), we have

R(τWh) = PR(diag(τωj))P
−1, where P = I2 ⊗ P.

Here R(diag(τωj)) is the same formula as (10), replacing θ by diag(τωj). Let
λ±(τωj) = λ±j be the eigenvalues of R(diag(τωj)). λ±j are the solutions of
(12), replacing θ by τωj. By (H6), we have 0 ≤ τωj < γ0 and

|λ±j| ≤ 1 , j = 1, · · · ,m.
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Then, by using Theorem 3.1, we obtain

||R(τWh)
n|| = ||R(diag(τωj))

n|| ≤ K (44)

with K a constant independent of n ∈ N, τ and h, || · || denotes the operator
norm for 2m× 2m matrices.
By (39), we obtain

||R̄n|| ≤ K1, (45)

where K1 is a constant independent of n, τ and h.
From (44) and (45), we obtain∣∣∣∣∣

∣∣∣∣∣
n∏

i=1

Ri

∣∣∣∣∣
∣∣∣∣∣ ≤ ||R(τWh)

n||(1 + τK1)
n ≤ KenτK1 ≤ K2. (46)

Hence, from (36), (43) and (46), we obtain∣∣∣∣∣∣(ε̂n, ε̂n+1/2

)T ∣∣∣∣∣∣
Wh

≤ K2

∣∣∣∣∣∣(ε̂0, ε̂1/2

)T ∣∣∣∣∣∣
Wh

+K2nC2

(
τ 3 + τ max

0≤t≤T
||αh(t)||

)
,

which implies that∣∣∣∣∣∣(ε̂n, ε̂n+1/2

)T ∣∣∣∣∣∣
Wh

≤ K2

∣∣∣∣∣∣(ν0, ε1/2 + ν1/2

)T ∣∣∣∣∣∣
Wh

+K2TC2

(
τ 2 + max

0≤t≤T
||αh(t)||

)
for 1 ≤ n ≤ N . Using

∣∣∣∣∣∣(ν0, ε1/2 + ν1/2

)T ∣∣∣∣∣∣
Wh

= C ′
2τ

2 for a constant C ′
2 > 0,∣∣∣∣∣∣(εn, εn+1/2

)T ∣∣∣∣∣∣
Wh

≤
∣∣∣∣∣∣(ε̂n, ε̂n+1/2

)T ∣∣∣∣∣∣
Wh

+
∣∣∣∣∣∣(νn, νn+1/2

)T ∣∣∣∣∣∣
Wh

and rewriting the constants, we finally obtain (28). �

5. Numerical experiments

We examine the convergence of the leapfrog scheme (13) and RKS4 (15),
by using the following model problem of the form

∂u

∂t
= v,

∂v

∂t
=
∂2u

∂x2
+ g(t, x, u), 0 ≤ t ≤ T, x ∈ Ω,

u(t, 0) = β0(t), u(t, 1) = β1(t), 0 ≤ t ≤ T,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x), x ∈ Ω.

(47)
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Here T = 1, Ω = [0, 1], g(t, x, u) = − sinu(t) and β0(t), β1(t), u0(x) and
v0(x) are given by using the following exact solution ([13])

u(t, x) = 4 tan−1

{
γ sinh

(
x√

1 − γ2

)
/ cosh

(
γt√

1 − γ2

)}
with γ = 0.5. Let N be a positive integer, h = 1/N , and Ωh be a uniform grid

with nodes xj = jh, j = 0, 1, · · · , N . We discretize
∂v

∂t
=
∂2u

∂x2
+ g(t, x, u) in

space with the forth-order implicit scheme

1

12

{
dvj−1(t)

dt
+ 10

dvj(t)

dt
+
dvj+1(t)

dt

}
=

1

h2

{
uj−1(t) − 2uj(t) + uj+1(t)

}
− 1

12

{
sin uj−1(t) + 10 sinuj(t) + sinuj+1(t)

}
with uj(t) ≈ u(t, xj) , v

j(t) ≈ v(t, xj) (see, [16]). Putting

uh(t) =
(
u0(t), · · · , uN(t)

)T
, vh(t) =

(
v0(t), · · · , vN(t)

)T
,

we obtain an MOL approximation

duh(t)

dt
= vh(t), Ĥ

dvh(t)

dt
= L̂huh(t) + ϕ̂h(t) + Ĥgh(t, uh(t)), (48)

where

L̂h =
1

h2


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 · · · 1 −2

 , Ĥ =
1

12


10 1 0 · · · 0
1 10 1 · · · 0
0 1 10 · · · 0
...

...
...

. . .
...

0 0 · · · 1 10

 ,

and ϕ̂h(t) = (β0(t), 0, · · · , 0, β1(t))
T . The eigenvalues of L̂h and Ĥ are

2

h2

(
cos

(j + 1)π

N + 2
− 1

)
,

1

6

(
5 + cos

(j + 1)π

N + 2

)
, j = 0, 1, · · · , N, (49)

respectively.
Multiplying Ĥ−1 to (48), we get (2) with D = 1, Lh = Ĥ−1L̂h, ϕh(t) =
Ĥ−1ϕ̂h(t). By (49) the eigenvalues of Lh is

12

h2

(
1 − 6

5 + cos((j + 1)π/(N + 2))

)
, j = 0, 1, · · · , N.
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Since

τρ(Wh) =
2
√

3τ

h

(
6

5 + cos((N + 1)π/(N + 2))
− 1

) 1
2

<

√
6τ

h
,

if we take the step size τ <
√

2h/
√

3, (H6) holds for the leapfrog scheme. If
we take the step size τ < 2h, (H6) holds for RKS4. We take the various grid
and step size of the form h = 2τ = 1/N so that both conditions are satisfied.
We apply the leapfrog scheme and RKS4 to the MOL approximation (48),
and integrate from t = 0 to t = T . We measure the errors of the schemes by
using the discrete L2-norm

εu,L2 = max
0<n≤2NT

||εn||, εv,L2 = max
0<n≤2NT

||εn+1/2||,

the discrete energy norm

εe = max
0<n≤2NT

||(εn, εn+1/2)||Wh

and maximum norm

εu,max = max
0<n≤2NT

{||εn||∞}, εv,max = max
0<n≤2NT

{||εn+1/2||∞}

with || · ||∞ the maximum norm on Rm.

Table 1: Numerical results for (47) using the leapfrog scheme

N 10 20 40 80 160 320 640
− log2 εu,L2 16.04 18.15 20.17 22.18 24.18 26.18 28.18
Increment 2.11 2.02 2.01 2.00 2.00 2.00
− log2 εv,L2 14.10 16.13 18.14 20.14 22.15 24.15 26.15
Increment 2.03 2.01 2.00 2.01 2.00 2.00
− log2 εu,max 15.55 17.66 19.68 21.69 23.69 25.69 27.69
Increment 2.11 2.02 2.01 2.00 2.00 2.00
− log2 εv,max 13.70 15.75 17.76 19.77 21.77 23.77 25.77
Increment 2.05 2.01 2.01 2.00 2.00 2.00
− log2 εe 13.31 15.40 17.42 19.42 21.43 23.43 25.43

Increment 2.09 2.02 2.00 2.01 2.00 2.00
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Table 2: Numerical results for (47) using RKS4

N 10 20 40 80 160 320 640
− log2 εu,L2 19.17 23.16 27.15 31.15 35.15 39.15 43.14
Increment 3.99 3.99 4.00 4.00 4.00 3.99
− log2 εv,L2 18.28 22.27 26.23 29.67 32.24 34.74 37.14
Increment 3.99 3.96 3.44 2.57 2.50 2.40
− log2 εu,max 18.73 22.71 26.70 30.70 34.70 38.70 42.62
Increment 3.98 3.99 4.00 4.00 4.00 3.92
− log2 εv,max 17.51 21.51 24.62 26.60 28.59 30.59 32.57
Increment 4.00 3.11 1.98 1.99 2.00 1.98
− log2 εe 16.98 20.97 24.90 28.60 31.75 34.55 36.73

Increment 3.99 3.93 3.70 3.15 2.80 2.18

Table 1 and Table 2 show that the observed order of the leapfrog scheme
and RKS4 is more than or equal 2. We observe that the order for u of RKS4
is higher than expected results from Theorem 4.1.
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